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Exercise 1 (24 marks)

a. (4 marks) Briefly describe the main difference between a compiled language and an
interpreted language.

b. (4 marks) Briefly describe the concept of tail recursion, and why it is desirable to
write tail recursive functions.

c. (4 marks) Is the following Ruby expression syntactically correct?

[’2’, ’times’, ’4’, ’is not’, "#{2+4}"].each { |x| puts x }

If no, explain what is wrong. If yes, what does the expression do?

d. (4 marks) What is the following Prolog program doing?

foo :-

repeat,

read(X),

write(X),

nl,

X = ’quit’,

!.

e. (4 marks) Briefly explain how synchronous messaging is achieved in Erlang?

f. (4 marks) Consider the Haskell function prod x y = x * y. How is the function
call prod 2 4 evaluated? What is the name of this evaluation concept?
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Exercise 2 (8 marks) Extend the Ruby class Fixnum with a method square root times

that, if called for a number n and a code snippet, executes the code snippet d
√
ne times.

For example, 5.square root times{ puts ’hello world!’ } produces
hello world!

hello world!

hello world!

You are not allowed to use a built-in Ruby function to compute the square root of numbers.

Exercise 3 (12 marks) Write a Ruby function prime numbers that has one input param-
eter n and returns an array containing the first n prime numbers (2 is the first prime
number).

Exercise 4 (12 marks) Write a Prolog program subst(X,L1,Y,L2) that replaces all oc-
currences of X in list L1 by two occurrences of Y to obtain list L2. For example,
subst(a,[a,b,c],1,L2) instantiates L2=[1,1,b,c].

Exercise 5 (14 marks) Given is a directed graph G, which is represented by a set of arc
facts of the form arc(X,Y). Here is an example:

arc(a,b).

arc(b,a).

arc(b,c).

arc(d,b). a b c

d

Write a Prolog predicate path(X,Y,P) that computes a path P from a node X to a node Y, if
such a path exists. An edge can occur only once in a path, i.e., cycles should be avoided. For
instance, path(a,c,P) should return P = [(a,b), (b,c)]; path P = [(a,b), (b,a),

(a,b), (b,c)] is not valid since arc (a,b) occurs twice. The order of the arcs in the
returned path does not matter, i.e., P = [(b,c), (a,b)] is also ok.

3



Exercise 6 (12 marks) Write a function loop for an Erlang process that implements an
accumulator for numbers and reacts as follows to messages: if a number is received, it
is added to the accumulator; if "reset" is received, the accumulator is reset to zero; if
"result" is received, the value of the accumulator is printed out; if "exit" is received,
the process is stopped. In all cases a short log message is printed out.

Show the following steps on using the process:

• Start the process

• Send a message to increment the accumulator by 10

• Show the value of the accumulator

• Stop the process

Exercise 7 (8 marks) Look at the following recursive Haskell program.

a. (4 marks) Briefly describe what the program does.

mystery :: [a] -> Integer

mystery [] = 0

mystery (h:t) = 1 + (mystery t)

b. (4 marks) Transform this program into a tail-recursive one.

Exercise 8 (10 marks) Write a Haskell module that exports a function noOfElem that
takes as input an element x and a list and returns the number of occurences of x in the
list. For instance, NoOfElem 1 [1,2,3,1] returns 2.
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Solution 1

a. Compiled languages are translated into a from that can be run directly on a com-
puter’s processor. Usually the whole program is translated before it is run.

Interpreted languages are processed by a higher-level virtual machine. Usually a
program is translated on the fly, i.e., a statement is translated and then immediately
executed.

b. A function is tail-recursive if there is no operation after the recursive call, that is,
no operations are executed after the recursive call terminates. As a consequence, no
data need to be stored on the stack that is needed when the recursive call terminates.
Hence, different from non-tail-recursive function, for tail-recursive functions the stack
does not grow with each recursive call.

c. The expression is syntactically correct. The result is: 2
times

4

is

not

6

d. This is a simple echo program. It reads from the standard input and shows the input
on the standard output. When the user input is “quit”, the program terminates.

e. At the receiver side:

• Each receive clause will have to match the process ID of the requesting sender
(in addition to the content of the message).

• Each receive clause has to send a response to the sender (instead of/in addition
to printing some result).

At the sender side:

• After sending a message, the sender has to wait for a response.

f. The function is evaluated in two steps:

• The first input parameter is applied, i.e., prod 2, yielding a partially evaluated
function (\y -> 2 * y)

• The partially evaluated function is applied to the second argument, i.e.,
(\y -> 2 * y) 4, yielding 8

This is called curried functions.
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Solution 2

class Fixnum

def square_root_times

i = 0

while i * i < self

i += 1

yield

end

end

end

Solution 3

def prime_numbers( n )

res = []

number = 2

count = 1

while count <= n

i = 2

while i <= number

break if number % i == 0

i += 1

end

if i == number

res.push(number)

count += 1

end

number += 1

end

return res

end

Solution 4

subst(_, [], _, []).

subst(X, [X|L], Y, [Y,Y|M]) :-

!,

subst(X, L, Y, M).

subst(X, [Z|L], Y, [Z|M]) :-

subst(X, L, Y, M).
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Solution 5

path(X, Y, P) :- path0(X, Y, [], P).

path0(X, X, P, P).

path0(X, Y, P0, P) :-

arc(X, Z),

not( member((X,Z), P0) ),

append(P0, [(X,Z)], P1),

path0(Z, Y, P1, P).

Solution 6

-module(accumulator).

-export([loop/0]).

loop() -> loop( 0 ).

loop( Sum ) ->

receive

"result" ->

io:format( "Result ~p~n", [Sum] ),

loop( Sum );

"reset" ->

io:format( "Reset to 0 ~n" ),

loop( 0 );

"exit" ->

io:format("Exit~n");

Number ->

io:format( "Increment by ~p~n", [Number] ),

loop( Sum + Number )

end.

Pid = spawn(fun accumulator:loop/1).

Pid ! 10.

Pid ! "result".

Pid ! "exit".
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Solution 7

a. The program computes the length of an array.

b. Tail-recursive version: pass the length of the list seen so far as a second parameter;
when the list is empty, the second parameter contains the length of the list.

module Tail (

len

) where

len :: [a] -> Integer -> Integer

len [] x = x

len (h:t) x = len t (x+1)

Solution 8

module NoOfElem (noOfElem) where

noOfElem :: Eq a => a -> [a] -> Int

noOfElem x [] = 0

noOfElem x (h:t) = (if h == x then 1 else 0) + noOfElem x t
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