
Programming Paradigms
Written Exam (4 CPs)

06.07.2015

First name Last name

Student number Signature

Instructions for Students

• Write your name and student number on the exam sheet and on every solution sheet
you hand in and also sign them.

• This is a closed book exam: the only resources allowed are blank paper and pens (do
not use pencils).

• Write neatly and clearly. The clarity of your explanations will affect your grade.

• The duration of the exam is 2 hours.

Good luck!

Do not write in this space

Question Marks Achieved
1 25
2 12
3 8
4 10
5 15
6 12
7 8
8 10

Total 100

1

Exercise 1 (25 marks)

a. (5 marks) Briefly describe the main differences between static typing and dynamic
typing.

b. (5 marks) Is the following Ruby expression syntactically correct?

[’2’, ’plus’, 3, "=", "#{2+3}"].each { |x| puts x }

If no, explain what is wrong. If yes, what does the expression do?

c. (5 marks) Briefly describe the generate and test pattern in Prolog.

d. (5 marks) What is wrong with the following case statement in Erlang? How could
you fix the code?

case X of

{_,3} -> doB;

{_,_} -> doA;

{2,_} -> doC;

{2,3} -> doD

end.

e. (5 marks) Briefly explain list comprehension in Haskell and give an example.

2

Exercise 2 (12 marks) Write a Ruby function that takes as input an array of temperature
data and computes the minimum, the maximum and the average temperature. The three
values are output to the console. For example, for the input data [20, 21, 22, 20, 17],
the output is min = 17, max = 23, avg = 20. You are not allowed to use the built-in
functions min and max, e.g., [1,2,3].min and [1,2,3].max.

Exercise 3 (8 marks) Write a Ruby function palindrome(a) to check whether an array
of characters represents a palindrome, i.e., is identical to the reversed array. For instance,
the array [’A’, ’B’, ’B’, ’A’] represents a palindrom, while [’A’, ’B’, ’B’, ’A’,

’C’] does not. You are not allowed to use Ruby’s array method reverse.

Exercise 4 (10 marks) The product of two natural numbers can be expressed as a re-
peated addition using the following recursive definition (Peano axioms):

0 ∗ y = 0

x ∗ y = (x− 1) ∗ y + y

Write a Prolog program to compute a product using this definition.

Exercise 5 (15 marks) Write a program in Prolog fit that iterates through a list of
numbers and selects numbers (starting from the beginning of the list) whose sum is smaller
than a given capacity. So as long as there is still enough capacity left, the program keeps
selecting numbers (skipping numbers that are too large). The program should return the
result in a list. For example, given the list [2,5,3,8,1,12] and the capacity 14, the
program should return the list [2,5,3,1] as this sums up to 11, which is less than 14
(when 8 and 12 are reached, they are too large to be included). The order of the items in
the result does not matter.

Exercise 6 (12 marks) Write a function loop for an Erlang process that receives meas-
sages consisting of a single parameter and does the following:

• if the parameter is a number, it outputs to the console whether the number is positive,
negative, or zero;

• if the parameter is “bye”, the process terminates;

• otherwise, a error message is printed, e.g., “Unexpected message”.

Show also how to start the process. (Hint: you can use a function is number(N), which is
true if N is a number, and false otherwise)

Exercise 7 (8 marks) Write a Haskell function noOfElem that counts the number of ele-
ments in a list. Your function should return the same result as the function length. Do
not use the function length for implementing noOfElem. You may use other functions,
though.

3

Exercise 8 (10 marks) Write a function in Haskell that finds an element in a list. It
returns True if the element is in the list, otherwise it returns False.

4

Solution 1

a. Static typing:

• types and their constraints are checked before executing the program

• pro: less error-prone

• con: sometimes too restrictive

Dynamic typing:

• type checking is done during program execution

• pro: more flexible

• con: harder to debug

b.

c. The expression is syntactically correct. The result is: 2 plus 3 is 5

d. The “generate and test” pattern has the following form:
foo :- g1, g2, ..., gn, t1, t2, ..., tm.

• The predicates g1, g2, ..., gn generate lots of different potential solutions.

• The predicates t1, t2, ..., tm test, whether something generated by g1,

g2, ..., gn is a solution; if this is not the case, backtracking starts and g1,

g2, ..., gn generate the next candidate.

e. The cases are in the wrong order, i.e., the most general ones comes in the second
place, hence case three and four will never match. The code can be fixed by moving
the second case to the end.

f. List comprehension in Haskell is a compact way to specify complex and possibly
infinite lists by specifying an output function, a variable, an input set and a predicate.
Example: The list of even numbers between 1 and 100 can be defined as
[x | x <- [1..100], mod x 2 == 0]

5

Solution 2

def timeseries(a)

min = max = a[0]

sum = i = 0

while i < a.length

max = a[i] if a[i] > max

min = a[i] if a[i] < min

sum += a[i]

i += 1

end

puts "min = #{min}"

puts "max = #{max}"

puts "avg = #{sum/a.length}"

end

An alternative solution would be:

def timeseries(a)

min = max = a[0]

sum = i = 0

a.each{ |v| max = v if v > max; min = v if v < min; sum += v }

puts "min = #{min}"

puts "max = #{max}"

puts "avg = #{sum/a.length}"

end

Solution 3

def palindrome(a)

if a.length == 1 || a.length == 0

true

else

if a[0] == a[-1]

palindrome(a[1..-2])

else

false

end

end

end

6

Solution 4

prod(0, _, 0).

prod(N, M, P) :-

N > 0,

N1 is N - 1,

prod(N1, M, K),

P is K + M.

Solution 5

fit([], _, []).

fit([H|T], C, R) :-

H > C,

fit(T, C, R).

fit([H|T], C, [H|R]) :-

H =< C,

C1 is C - H,

fit(T, C1, R).

A solution with an accumulator:

fit(L, C, R) :- fit_acc(L, C, [], R).

fit_acc([], _, A, A).

fit_acc([H|T], C, A, R) :-

H > C,

fit_acc(T, C, A, R).

fit_acc([H|T], C, A, R) :-

H =< C,

C1 is C - H,

fit_acc(T, C1, [H|A], R).

7

Solution 6

-module(sign).

-export([loop/0]).

loop() ->

receive

N when is_number(N) ->

if

N < 0 -> io:format("Number is negative~n");

N > 0 -> io:format("Number is positive~n");

N == 0 -> io:format("Number is zero~n")

end,

loop();

"bye" ->

io:format("Bye~n");

_ ->

io:format("Unexpected message~n"),

loop()

end.

P = spawn(fun sign:loop/0).

Solution 7

module NoOfElem where

noOfElem :: [a] -> Int

noOfElem [] = 0

noOfElem (h:t) = 1 + noOfElem t

An alternative solution that is tail-recursive:

module NoOfElem where

noOfElem2 :: [a] -> Int -> Int

noOfElem2 [] x = x

noOfElem2 (h:t) x = noOfElem2 t (x+1)

8

Solution 8

module Findelement where

findelement :: Eq a => a -> [a] -> Bool

findelement x [] = False

findelement x (h:t) =

if x == h then

True

else

findelement x t

9

