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Exercise 1 (25 marks)

a. (5 marks) Briefly describe the main differences, advantages and disadvantages be-
tween static typing and dynamic typing.

b. (5 marks) Duck typing in Ruby gives a lot of flexibility when accessing objects. For
example, an array can be accessed as a stack (last in, first out) or as a queue (first
in, first out).

Assume that arr = [1,2,3,4,5] is a Ruby array object that (in addition to the
standard array operation) also supports the following operations:

• push appends an element to the array

• pop removes the last element of the array

• enqueue adds an element to the front of the array and shifts all other elements
by one position

• dequeue removes last element of the array

What will array arr look like after the following sequence of operations?

arr[0] = 10

arr.pop

arr.enqueue 6

arr.push 8

arr.dequeue

c. (5 marks) Briefly describe the generate and test pattern in Prolog.

d. (5 marks) Briefly explain the concept of list comprehension in Haskell and give a
short example.

e. (5 marks) What is wrong with the following case statement in Erlang? How could
you fix the code?

case X of

{_,_} -> doA;

{_,3} -> doB;

{2,_} -> doC;

{2,3} -> doD

end.
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Exercise 2 (6 marks) Write a function ticketPrice(noOfZones,age) in Ruby that, de-
pending on the number of zones and the age of the person, computes the price of a ticket
for public transport. The base price of a ticket is e 2. Each additional zone after the first
adds e 1 to the price. Children up to (and including) the age of 12 and persons who are
60 years and older pay half price.

Exercise 3 (8 marks) Write a Ruby function to calculate the fuel consumption of a car (in
liters) for road trips it has taken. The input parameters of the function are fuelConsumpt,
measured in liters per 100 kilometers, and trips[], an array containing the distances of
road trips (in kilometers) taken by that car. Compute the overall fuel consumption for the
voyages stored in trips.

Exercise 4 (16 marks) Write a program in Prolog that goes through a list of numbers
and selects numbers (starting from the beginning of the list) whose sum is smaller than a
given capacity. So as long as there is still enough capacity left, the program keeps selecting
numbers (skipping numbers that are too large). The program should return the result in a
list. For example, given the list [2,5,3,8,1,12] and the capacity 14, the program should
return the list [2,5,3,1] as this sums up to 11, which is less than 14 (when 8 and 12 are
reached, they are too large to be included). The order of the items in the result does not
matter.

Exercise 5 (10 marks) Write a Prolog program aless(X,Y) that compares two
words X, Y and succeeds if X is alphabetically smaller than Y. For example,
aless(’Friday’,’Saturday’) succeeds, whereas aless(’Friday’,’Friday’) fails.
Hint: You can use the predicate name(X,LX) that translates an atom (word) X into a
list of its character codes LX, e.g., name(alp,X) yields LX = [97,108,112].

Exercise 6 (15 marks) Write an Erlang process that acts as a time server, i.e., when it
receives a request from another process, it sends back the current time of day. The server
process receives a tuple containing the ID and the time zone of the process requesting the
time. For example, a request may look like this {PID1, +3} or this {PID1, -6}.
Assume that you have a function time(), which returns the current time in UTC (Coor-
dinated Universal Time) or GMT (Greenwich Mean Time). The result of a call of time()
is a tuple containing the hours, minutes, and seconds.

-module(timeserver).

-export([loop/0]).

loop () ->
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Exercise 7 (10 marks) Write a function in Haskell that finds an element in a list. It
returns True if the element is in the list, otherwise it returns False.

module Findelement where

findelement ::

Exercise 8 (10 marks) Pascal’s triangle is used to compute Binomial coefficients:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

...

You compute the number in each row by adding the two numbers above it, e.g. 6 = 3 +
3. If there is only one number, then the missing number is considered to be 0. The first
row always contains a single 1.

Write a function pascal in Haskell that computes the first n rows of the Pascal triangle.
For example, calling pascal 3 would return [[1], [1,1], [1,2,1]]. Assume that you
have a function nextRow, which, given a row, computes the next row.

pascal :: Int -> [[Int]]
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Solution 1

a. Static typing:

• types and their constraints are checked before executing the program

• pro: less error-prone

• con: sometimes too restrictive

Dynamic typing:

• type checking is done during program execution

• pro: more flexible

• con: harder to debug

b. arr = [6, 10, 2, 3, 4]

c. The “generate and test” pattern has the following form:
foo :- g1, g2, ..., gn, t1, t2, ..., tm.

• The predicates g1, g2, ..., gn generate lots of different potential solutions.

• The predicates t1, t2, ..., tm test, whether something generated by g1,

g2, ..., gn is a solution; if this is not the case, backtracking starts and g1,

g2, ..., gn generate the next candidate.

d. List comprehension in Haskell is a compact way to specify complex and possibly
infinite lists by specifying an output function, a variable, an input set and a predicate.
Example: The list of even numbers between 1 and 100 can be defined as
[x | x <- [1..100], mod x 2 == 0]

e. The cases are in the wrong order, i.e., the most general ones come first. Consequently,
the later cases will never be reached. The code can be fixed by reversing the order
of the cases.
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Solution 2

def ticketPrice(noOfZones,age)

price = 2.0 + noOfZones - 1.0

return price/2.0 if (age <= 12 || age >= 60)

return price

end

Solution 3

def fuel(fuelConsumpt, trips=[])

sum = 0.0

trips.each{ |x| sum = sum + (x/100 * fuelConsumpt) }

return sum

end

Solution 4

fit([],C,L,L).

fit([H|T],C,L,R) :-

H > C,

fit(T,C,L,R).

fit([H|T],C,L,R) :-

H <= C,

N is C - H,

fit(T,N,[H|L],R).

Solution 5

aless(X,Y) :-

name(X,LX),

name(Y,LY),

alessx(LX,LY).

alessx([],[_,_]).

alessx([X|_], [Y|_]) :- X < Y.

alessx([H|TX],[H|TY]) :- alessx(TX,TY).
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Solution 6

-module(timeserver).

-export([loop/0]).

loop () ->

receive

{PID,TZ} ->

{H,M,S} = time(),

if

H + TZ > 23 -> PID ! {H + TZ - 24,M,S};
H + TZ < 0 -> PID ! {H + TZ + 24,M,S};
true -> PID ! {H + TZ,M,S}

end,

loop()

end.

Solution 7

module Findelement where

findelement :: Eq a => a -> [a] -> Bool

findelement x [] = False

findelement x (h:t) =

if x == h then

True

else

findelement x t

Solution 8

pascal :: Int -> [[Int]]

pascal n = loop n [1]

where

loop 1 xs = [xs]

loop n xs | n > 1 = xs : loop (n-1) (nextRow xs)
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