
Programming Paradigms
Written Exam

17.06.2014

First name Last name

Student number Signature

Instructions for Students

• Write your name and student number on the exam sheet and on every solution sheet
you hand in and also sign them.

• This is a closed book exam: the only resources allowed are blank paper and pens (do
not use pencils).

• Write neatly and clearly. The clarity of your explanations will affect your grade.

• The duration of the exam is 2 hours.

Good luck!

Do not write in this space

Question Marks Achieved
1 25
2 10
3 10
4 10
5 10
6 10
7 15
8 10

Total 100

1

Exercise 1 (25 marks)

a. (5 marks) Briefly describe the main differences between a compiled language and an
interpreted language.

b. (5 marks) When you move the execution of an Erlang program from a single-processor
machine to a multi-core machine or a cluster of computers, do you have to rewrite
or adapt your program? Explain your answer.

c. (5 marks) Briefly describe the difference between the following expressions in Prolog:

• ?- 7 = 3 + 4

• ?- 7 is 3 + 4

What will be the result of executing these expressions?

d. (5 marks) Given is the expression [20, ‘‘20.0’’, 20.0].

• Is the expression legal in Ruby?

• Is the expression legal in Haskell?

Explain your answers and briefly describe the meaning of this expression.

e. (5 marks) Briefly explain the concept of list comprehension in Haskell and give a
short example.

2

Exercise 2 (10 marks) Write a Ruby function palindrome(a) to check whether an array
of characters represents a palindrome, i.e., is identical to the reversed array. For instance,
the array [’A’, ’B’, ’B’, ’A’] represents a palindrom, while [’A’, ’B’, ’B’, ’A’,

’C’] does not. You are not allowed to use Ruby’s array method reverse.

Exercise 3 (10 marks) Write a Ruby function to calculate the fuel consumption of a
car (in liters) for road trips it has taken. The input parameters of the function are
fuelConsumpt, measured in liters per 100 kilometers, and trips[], an array contain-
ing the distances of road trips (in kilometers) taken by that car. Compute the overall fuel
consumption for the voyages stored in trips.

Exercise 4 (10 marks) Write a Prolog program that removes all duplicates from a list
and returns the duplicate-free list. For instance, given the list L1 = [a,b,a,c,a,a,b],
the duplicate-free list is L2 = [c,a,b]. Note that the order of the elements in L2 does not
matter. You can use the built-in predicate member(X,L) to check whether X is a member
in L.

Exercise 5 (10 marks) Write a Prolog program that finds all solutions to the equation

x · x = y + y

with x being in the range of [1, 3] and y in the range of [1, 5].

Exercise 6 (10 marks) Write a function loop for an Erlang process that does the follow-
ing. When it receives the message "event", it sends a message containing the current
count of events to a process registered with an atom called observer, displays the count
on the screen, and increments the current event count. If it receives the message "bye", it
displays “Bye” on the screen and quits.

Exercise 7 (15 marks) Write a function isbalanced in Haskell that checks whether a
string containing open and closed parentheses is balanced. A string of parentheses is
balanced when every open one has a corresponding closed one and at any point there are
not more closed ones than open ones. An empty string is balanced. For example,

• “(())” is balanced

• “(())()” is balanced

• “()(()” is not balanced

• “())” is not balanced

Exercise 8 (10 marks) Look at the following recursive Haskell program.

a. (4 marks) Briefly describe what the program does.

mystery :: [a] -> Integer

mystery [] = 0

mystery (h:t) = 1 + mystery t

b. (6 marks) Transform this program into a tail-recursive one.

3

Solution 1

a. In a compiled language, a program (the source code) is translated into a form that
can be run directly on a computer’s processor.
Interpreted languages are processed by a higher-level virtual machine. Usually, a
program is translated on the fly, i.e., a statement is tanslated and the immediately
executed.

b. No, Erlang programs don’t have to be modified to run on a multi-core. The main rea-
son for is are that processes do not share any resources and communicate exclusively
by message passing. Therefore it makes no difference whether they run on the same
machine or on different machines. The Erlang virtual machine will automatically
adapt and use the underlying hardware.

c. In the expression 7 = 3 + 4, the unification operator = tries to match the left-hand
and right-hand side. This is not possible here, since 3+4 is not evaluated, hence the
two sides are different, and the goal fails.
In the expression 7 is 3 + 4, the is operator first evaluates the right-hand side to
the value 7 and then matches it to the left-hand side; the goal succeeds.

d. The expression is legal in Ruby and represents an array of an integer, a string, and
a float. Ruby allows arrays of objects with different type. This is also called Duck
typing.
The expression is not legal in Haskell. Haskell is a strongly typed language and does
not allow an array to contain elements with different type.

e. List comprehension in Haskell is a compact way to specify complex and possibly
infinite lists by specifying an output function, a variable, an input set and a predicate.
Example: The list of even numbers between 1 and 100 can be defined as
[x | x <- [1..100], mod x 2 == 0]

Solution 2

def palindrome(a)

if a.length == 1 || a.length == 0

true

else

if a[0] == a[-1]

palindrome(a[1..-2])

else

false

end

end

end

4

Solution 3

def fuel(fuelConsumpt, trips=[])

sum = 0.0

trips.each{ |x| sum = sum + (x/100 * fuelConsumpt) }

return sum

end

Solution 4

rmdup([], []).

rmdup([H|T], R):-

member(H, T),

!,

rmdup(T,R).

rmdup([H|T], [H|Rest]):-

rmdup(T, Rest).

Solution 5

x(1).

x(2).

x(3).

y(1).

y(2).

y(3).

y(4).

y(5).

eq(X,Y) :- x(X), y(Y), A is X*X, A is Y+Y.

Solution 6

-module(eventcount).

-export([loop/1]).

loop(Counter) ->

receive

"event" ->

observer ! Counter,

io:format("event ~p~n",[Counter]),

loop(Counter+1);

"bye" ->

io:format("bye~n")

end.

5

Solution 7

module Paran where

isbalanced :: [Char] -> Int -> Bool

isbalanced [] 0 = True

isbalanced [] nonzero = False

isbalanced (h:t) x =

if x < 0 then

False

else

if h == ’(’ then

isbalanced t (x+1)

else

isbalanced t (x-1)

Solution 8

a. The program computes the length of an array.

b. Tail-recursive version: pass the length of the list seen so far as a second parameter;
when the list is empty, the second parameter contains the length of the list.

module Tail (

len

) where

len :: [a] -> Integer -> Integer

len [] x = x

len (h:t) x = len t (x+1)

6

