Programming Paradigms Exercise 4 - Prolog 3

Marco Montali Thomas Tschager

2nd Semester 2017/18

1. In the previous exercise you implemented a program to compute the Nth Fibonacci number:

\[
\text{fib}(1, 1).
\]
\[
\text{fib}(2, 1).
\]
\[
\text{fib}(N, F) :-
\]
\[
N > 2,
\]
\[
N2 \text{ is } N-2, \text{ N1 is } N-1,
\]
\[
\text{fib}(N2, F2), \text{ fib}(N1, F1),
\]
\[
F \text{ is } F1+F2.
\]

For large values, this version takes too long. Use accumulators to implement a faster version. Why is the version with accumulators so much faster?

2. In the previous exercise you also implemented a program to find the minimal element of a list:

\[
\text{minElem}([\text{Min}], \text{Min}).
\]
\[
\text{minElem}([\text{Min}|\text{Tail}], \text{Min}) :-
\]
\[
\text{minElem}(\text{Tail}, \text{TailMin}),
\]
\[
\text{Head } \rightleftharpoons \text{ TailMin}.
\]
\[
\text{minElem}([\text{Head}|\text{Tail}], \text{TailMin}) :-
\]
\[
\text{minElem}(\text{Tail}, \text{TailMin}),
\]
\[
\text{Head } > \text{ TailMin}.
\]

Implement the same predicate \text{minElem} which return the minimal element of a list using accumulators.

3. The fictitious country of Elbonia issues stamps in the denominations of 15¢, 7¢, 3¢, and 1¢. Write a Prolog program that gets as input the total postage you have to pay and outputs how many stamps of each denomination you need to reach this total.

4. A directed graph can be represented in Prolog by listing the edges between nodes as facts. An edge from node a to node b would be represented by
edge(a, b).

Define a predicate $\text{path}(S, T, P)$ that returns true if there is a simple (acyclic) path from S to T. Otherwise it returns false.
Hint: you can use the $\text{member}/2$ predicate of Prolog as $\text{member}(X, L)$ which returns true if the list L contains element X.