1. Write a program that computes the greatest common divisor of two numbers x and y using the Euclidean algorithm. The Euclidean algorithm is defined as follows: if $x = y$, then return x (or y), otherwise $gcd_{e}(x, y) = gcd_{e}(x - y, y)$ where $x > y$.

2. Write a function `noOfElem` that counts the number of elements in a list. Your function should return the same result as the function `length`.

3. Use the function `noOfElem` of the previous exercise to write a function `countElem` which counts how many times a given element appears in the list. Do not use the function `length`. You may use other functions, though.

4. (a) Write a function that takes two lists x and y as input and returns True if x is a prefix of y (otherwise it returns False). For example,
 - $[]$ is a prefix of any list
 - $[3,5]$ is a prefix of $[3,5,10,9,8]$
 - $[3,5,7]$ is not a prefix of $[3,5]$
 - $[2,3]$ is not a prefix of $[1,2,3,4]$
 - non-empty lists are never a prefix of $[]$

 (b) Write a function that takes two lists x and y as input and returns True if x is a subsequence of y (otherwise it returns False). For example,
 - $[]$ is a subsequence of any list
 - $[3,5]$ is a subsequence of $[3,5,9,8]$
 - $[3,5,7]$ is not a subsequence of $[3,5]$
 - $[2,3]$ is a subsequence of $[1,2,3,4]$
 - non-empty lists are never a subsequence of $[]$
5. Write a function `orderIt` that sorts a list. Implement the selection sort algorithm. You can use the following functions:

- `minimum`, which returns the minimum element of a list, e.g. `minimum [3,5,2,4]` would return 2
- `delete`, which deletes the first occurrence of an element from a list, e.g. `delete 2 [3,5,2,4]` would return `[3,5,4]

In order to use `delete` you have to import the module `Data.List`

Bonus: Can you also implement the Quicksort algorithm?