1. Write a function `innerprod` that takes two vectors \(v \) and \(w \) represented by lists and returns the inner product. The inner product of two vectors is defined as \(\vec{v} \cdot \vec{w} = v_1 \cdot w_1 + v_2 \cdot w_2 + \ldots v_n \cdot w_n \). For example, if \(v = [3,5,0,2] \) and \(w = [2,3,1,4] \), then the product of \(v \) and \(w \) is equal to \(3 \cdot 2 + 5 \cdot 3 + 0 \cdot 1 + 2 \cdot 4 = 6 + 15 + 0 + 8 = 29 \). The input vectors must have equal length. Otherwise the return value must be -1.

2. Implement the sieve of Eratosthenes in Haskell. This algorithm determines all the prime numbers in a range of numbers by removing all the multiples of 2,3,5,... from the range. What is left in the range are only prime numbers. For example, for the range \([2..20]\) (1 is not a prime number), we would first remove all multiples of 2 and are left with \([2,3,5,7,9,11,13,15,17,19]\). In the next step we remove multiples of 3 and are left with \([2,3,5,7,11,13,17,19]\). Once we reach a number whose first multiple is larger than 20, we stop.

3. (a) Write a function `selectsort` that sorts a list using the selection sort algorithm.
 (b) Write a function `quicksort` that sorts a list using the quicksort algorithm.
 (c) Write a function `qs_lol` which employs the quicksort algorithm, gets a list of lists as an input and returns a list of lists as an output, such that each outputted list is sorted using the values of the last list as sort keys. For example, the input
 \[
 [[0,1,2],[23,26,30],[3400,1700,5000]]
 \]
 should result in the output:
 \[
 [[1,0,2],[26,23,30],[1700,3400,5000]].
 \]
 (d) Write two functions `qs_lc_tuple_f` and `qs_lc_tuple_l` which employ the quicksort algorithm, get a list of tuples of the form `(Int,Int)` and return the list sorted in ascending order of the first element or the last element respectively.
For example,

\[
\text{qs_lc_tuple_f} \ [(5,1),(6,4),(2,8),(4,2)]
\]
\[
\quad [(2,8),(4,2),(5,1),(6,4)]
\]

and

\[
\text{qs_lc_tuple_l} \ [(5,1),(6,4),(2,8),(4,2)]
\]
\[
\quad [(5,1),(4,2),(6,4),(2,8)]
\]

You can use the build-in functions: \texttt{minimum}, which returns the minimum element of a list, and \texttt{delete}, which deletes the first occurrence of an element from a list. In order to use \texttt{delete} you have to import the module \texttt{Data.List}.
