
Programming Paradigms
Unit 18 — Summary of Basic Concepts

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2016/17 Unit 18 – Summary of Basic Concepts 1/13



Basic Concepts of Programming Languages

Programming languages are artificial languages designed to communicate
with computers

Provide most powerful human-computer interface

There are thousands of different languages, which are more or less
appropriate for different problems

Can be classified according to programming paradigms and abstraction level

There are many similarities to natural languages, e.g., syntax, semantics

Syntax determines whether a programm is well-formed
Semantic determines the meaning of lanugage concepts/programs, and can
be defined in different ways (operational, aximoatic, denotational semantics)

Type system in a programming language is needed to organize data and
helps to check the correctness of programs

Different forms of type checking, all having pros and cons

Weak typing vs. strong typing
Static vs. dynamic type checking
Type casting

PP 2016/17 Unit 18 – Summary of Basic Concepts 2/13



Imperative and Object-oriented Paradigm

Imperative paradigm is the oldest programming paradigm, based on
von Neumann architecture

Assignment statement is a central element, assigning values to memory
locations
Program consists of sequence of statements that change the program state

Procedural programming is a refinement that makes it easier to write
complex programs

Machine languages were the earliest imperative languages, followed by
FORTRAN and ALGOL

Abstract Data Types is a further extension of imperative programming

Data and operations are encapsulated into a bundle (information hiding)
This hides the underlying represenation and implementation

Object-oriented paradigm extends ADTs

Classes are blueprints for objects that encapsulae both data and operations
Objects exchange messages
Provides encapsulation, information hiding, inheritance, and dynamic
dispatching

PP 2016/17 Unit 18 – Summary of Basic Concepts 3/13



Object-oriented Programming with Ruby/1

Design goal of Ruby: simplicity and productivity of the programmer

Ruby is a pure object-oriented language, treating objects in a consistent way

Ruby is a strongly typed language, but applies dynamic type checking

Supports duck typing, and is therefore very flexible when it comes to
substitutability

Exact class of object is less relevat, but what methods/operations can be
performed counts
Comparable to interfaces, e.g., in Java

Some nice features not present in other languages: rich set of methods on
arrays, code blocks that can be passed as paraemters to methods, modules,
mixins (i.e., modules included in class definitions), accessor methods that
can have the same name as variables

Programmers can be very productive using Ruby, can be used like a
scripting language

Comes with a very successful web development framework: Ruby on Rails

The original Twitter implementation was done in Ruby

PP 2016/17 Unit 18 – Summary of Basic Concepts 4/13



Object-oriented Programming with Ruby/2

Performance: Ruby is not the most efficient language

All the flexibility makes it difficult to compile programs

Concurrent programming is difficult to do (with a state-based language)

Type Safety: duck typing makes it harder to debug code that has type
errors in it

PP 2016/17 Unit 18 – Summary of Basic Concepts 5/13



Recursion

Recursion is just a different kind of loop, but as expressive as loops

Some programming languages are haevily based on recursion, others do not
offer recursion at all

Two important steps in writing recursive programs

Base cases
Termination

Often recursion allows you to write elegant code

With the right language, it is even efficient

Tail recursion is important to make recursive programs efficient

In tail recursion, the recursive call is the last statement before the function
terminates, i.e., after returning from the recursive call no other statements
need to be executed
Therefore, no information need to be stored on the stack

PP 2016/17 Unit 18 – Summary of Basic Concepts 6/13



Logic Programming in Prolog/1

Prolog is a declarative programming language based on first-order logic

Specifies what to compute and not how to do it

A Prolog program/knowledge base consists of facts and rules

Evaluating a Prolog program means to prove a goal

Thereby, key concepts are instantiation, (pattern) matching, and
backtracking

Prolog uses recursion instead of loops

Lists and structures are two very important data structures

The cut operator allows to stop backtracking

Should be used with care
A better programming style is to replace it by negation

“Generate and test” is a very common programming pattern

PP 2016/17 Unit 18 – Summary of Basic Concepts 7/13



Logic Programming in Prolog/2

The box model shows the execution of a Prolog program

Has four ports: CALL, EXIT, REDO, FAIL

Debugger shows the program execution according to the box model

trace provides an exhausitive tracing mode
debug allows to jump to spy points set by the spy predicate

Accumulators are frequently needed to collect intermediate results when
traversing structures or lists

Helpful to make programs tail-recursive

Sorting is an important operation

Generalized insertion sort, which allows to pass a sorting predicate
Constructing structures with the =.. (univ) operator needed

Another frequent and powerful operation is mapping structures and lists

General map-functions can be used (second-order functions)

read and write predicates for simple interactive programs

PP 2016/17 Unit 18 – Summary of Basic Concepts 8/13



Logic Programming in Prolog/3

Prolog has a steeper learning curve compared to other languages

Fairly focused niche applications, not really a practical general-purpose
language

Mainly used in application areas, such as artificial intelligence, natural
language processing, and databases

There are scalability issues, the basic matching strategy used by Prolog is
computationally expensive

Has problems to process large data sets

It is not as declarative as it seems at first glance

If you want to write efficient Prolog programs, you have to know what is
going on behind the scenes

PP 2016/17 Unit 18 – Summary of Basic Concepts 9/13



Functional Programming in Haskell/1

Haskell is a pure functional language, providing referential transparency

function give the same output for the same input
functions have no side effects
a variable can only be assigned a value once

The type system (strong/static) prevents you from making a lot of
mistakes

Nevertheless, it is quite flexible when it comes to extending it with
user-defined types

Haskell offers a lot in terms of expressiveness, yielding very concise code

Hasekell uses curried functions in combination with partial evaluation of
functions,

i.e., internally, functions have only one input parameter;
functions with multiple input parameters are decomposed into a sequence of
partial functions, each having one parameter

It is easier to show the correctness of your programs, due to the pure
functional style

PP 2016/17 Unit 18 – Summary of Basic Concepts 10/13



Functional Programming in Haskell/2

Haskell does lazy evaluation, which gives you an additional tool for writing
programs efficiently

Lazy evaluation supports to work with infinite lists: only those (finite) parts
are evaluated that are actually needed and only when they are needed

Haskell supports list comprehension, a powerful way to specify lists

The pure functional paradigm also has a price: dealing with messy
real-world situations such as IO and state is not easy

Haskell has a steep learning curve, i.e., it takes a while to learn how to
wield the power of Haskell

This may also explain the fact that the Haskell community is relatively small

PP 2016/17 Unit 18 – Summary of Basic Concepts 11/13



Concurrent Programming in Erlang/1

The shared-nothing, message-passing process model is very powerful when
it comes to implementing concurrency

Concurrency means any execution order (e.g., parallel or serial) without
compromising the correctness of the program

Erlang offers a lot in terms of reliability and fault tolerance

Controlled crash

Erlang was developed with the aim to achieve industrial-strength high
performance

Erlang processes run on a virtual maching that automatically adapts to the
underlying hardware

Runs on as many cores/machines as available

Language supports some powerful features of functional and logic-oriented
languages

e.g., pattern matching, optimized for tail-recursion

OTP provides a lot of functionality to make it easier to implement
concurrent applications

PP 2016/17 Unit 18 – Summary of Basic Concepts 12/13



Concurrent Programming in Erlang/2

The syntax of the language is a weird mix of Prolog with functional
language constructs thrown in

While Erlang shines when it comes to concurrency, programming simpler
(serial) things tend to be harder than in other languages

PP 2016/17 Unit 18 – Summary of Basic Concepts 13/13


