
Programming Paradigms
Unit 17 — Erlang Processes

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2016/17 Unit 17 – Erlang Processes 1/39



Outline

1 Basic Concepts of Processes

2 Messaging

3 Reliability through Process Links

PP 2016/17 Unit 17 – Erlang Processes 2/39



Basic Concepts of Processes

Outline

1 Basic Concepts of Processes

2 Messaging

3 Reliability through Process Links

PP 2016/17 Unit 17 – Erlang Processes 3/39



Basic Concepts of Processes

Processes

Processes are the fundamental units of concurrency in Erlang

They communicate with each other via messages

Processes are also the basic container for program state in Erlang

No shared state, which makes it easier to proof the correctness of programs

PP 2016/17 Unit 17 – Erlang Processes 4/39



Basic Concepts of Processes

Basic Primitives for Processes

There are 3 basic primitives for processes

Creating a new process (with spawn)
Sending a message (with !, pronounced ”bang”)
Receiving a message (with receive)

That’s enough to get us started

Let’s write a simple translation process that gets a word in Spanish and
replies with an English translation

The process should run in a loop, waiting for words to translate

PP 2016/17 Unit 17 – Erlang Processes 5/39



Basic Concepts of Processes

Translation Example/1

-module(translate).

-export([loop/0]).

loop() ->

receive

"casa" ->

io:format("house~n"),

loop();

"blanca" ->

io:format("white~n"),

loop();

->

io:format("I don’t understand~n"),

loop()

end.

PP 2016/17 Unit 17 – Erlang Processes 6/39



Basic Concepts of Processes

Translation Example/2

The first two lines define the module translate and the export of function
loop/0

The next block defines the function loop()

loop() ->

...

end.

loop is called recursively in the body of the function

This is OK, since it is tail-recursion, and Erlang is optimized for
tail-recursion

loop() is essentially an empty function that loops forever

PP 2016/17 Unit 17 – Erlang Processes 7/39



Basic Concepts of Processes

Translation Example/3

The next block is the function receive

receive ->

...

This function will receive a message from another process

receive works similar to the other pattern matching constructs, such as
the case statement and function definitions

It tries to match a received message to one of the matching clauses

"casa" ->

io:format("house~n"),

loop();

If statements in a matching clause span more than one line, they are
separated by commas

PP 2016/17 Unit 17 – Erlang Processes 8/39



Basic Concepts of Processes

Running a Process

After compiling the module translate, we can create a process running
the function loop

>c(translate).

{ok,translate}

> Pid = spawn(fun translate:loop/0).

<0.130.0>

To spawn a process, function spawn is used

It takes a function as argument, starts this function in a new process, and
returns the process ID

Now we have the process (with ID 0.130.0) up and running

Variable Pid stores the process ID

So far, the process is not doing much: it’s just sitting there waiting for
messages

PP 2016/17 Unit 17 – Erlang Processes 9/39



Basic Concepts of Processes

Sending Messages

Let us send some messages to the process

> Pid ! "casa".

house

"casa"

> Pid ! "blanca".

white

"blanca"

> Pid ! "loco".

?

"loco"

The ! operator (pronounced ”bang”) is used to send messages and has the
following general form: Pid ! message

Pid is any process ID
message can be any value, e.g., primitive values, lists, tuples

PP 2016/17 Unit 17 – Erlang Processes 10/39



Basic Concepts of Processes

Variations on Processes

You can also spawn processes on a remote machine using a slightly
different syntax

Pid = spawn(node@server,function).

Similar, it is possible to send messages to processes running on other nodes

{Pid, node@server} ! message

PP 2016/17 Unit 17 – Erlang Processes 11/39



Messaging

Outline

1 Basic Concepts of Processes

2 Messaging

3 Reliability through Process Links

PP 2016/17 Unit 17 – Erlang Processes 12/39



Messaging

Messaging

What we’ve just implemented is called asynchronous messaging

In asynchronous messaging, the sender sends a message, but does not wait
actively for a reply

E-mails and SMS text messages are asynchronous

In synchronous messaging, the sender sends a message and actively waits
for the response

Phone calls and loading a web page are synchronous

PP 2016/17 Unit 17 – Erlang Processes 13/39



Messaging

Synchronous Messaging

To change the message model to synchronous messaging we need to do the
following steps:

1 Each receive clause will also have to match the process ID of the
requesting sender (in addition to the “original” message, e.g., the word)

2 Each receive clause has to send a response to the sender (instead of, e.g.,
just printing the result)

3 On the sender side, instead of using !, we’ll write a simple function that
sends a request and waits for the response

PP 2016/17 Unit 17 – Erlang Processes 14/39



Messaging

Synchronous Messaging – Receiver

First, we rewrite the receive clause

receive

...

{Pid,"casa"} ->

Pid ! "house",

loop();

...

Instead of just matching a word, we match a tuple consisting of the process
ID of the sender and a word

Instead of printing the result, we send it back to the requesting process

PP 2016/17 Unit 17 – Erlang Processes 15/39



Messaging

Synchronous Messaging – Sender/1

Starting a process with the new modified loop function and sending
something to it is not enough

> Trans = spawn(fun translate2:loop/0).

<0.144.0>

> Trans ! {self(),"casa"}.
{<0.61.0>,"casa"}

We send the correct tuple to the process, but we don’t pick up its answer

Function self() returns the own process ID

Next we’ll write a function that will send a message and wait for the reply

PP 2016/17 Unit 17 – Erlang Processes 16/39



Messaging

Synchronous Messaging – Sender/2

In the synchronous model, the sender must send a message and then
immediately wait for a response

Given a process ID in Receiver, a general sender looks as follows

Receiver ! {self(),"message"},
receive

Message -> do something with(Message)

end.

The sender uses a receive function to wait for the response

PP 2016/17 Unit 17 – Erlang Processes 17/39



Messaging

Synchronous Messaging – Sender/3

Since we are using the translation service frequently, we encapsulate the
request for a translation into a new function

translate(To,Word) ->

To ! {self(),Word},
receive

Translation -> "The translation is:" ++ Translation

end.

The complete module is shown on the next slide

PP 2016/17 Unit 17 – Erlang Processes 18/39



Messaging

Synchronous Messaging – Sender/4

-module(translate2).
-export([loop/0]).
-export([translate/2]).

loop() ->
receive

{Pid, "casa"} ->
Pid ! "house",
loop();

{Pid, "blanca"} ->
Pid ! "white",
loop();

{Pid, } ->
Pid ! "???",
loop()

end.

translate(To,Word) ->
To ! {self(),Word},
receive

Translation -> "The translation is: " ++ Translation
end.

PP 2016/17 Unit 17 – Erlang Processes 19/39



Messaging

Synchronous Messaging – Sender/5

After compiling it, we can spawn a process running loop and then send
messages using translate

> Trans = spawn(fun translate2:loop/0).

<0.39.0>

> translate2:translate(Trans,"blanca").

"The translation is: white"

> translate2:translate(Trans,"xxxx").

"???"

The new version of translate sends a message and then waits for the
reply

PP 2016/17 Unit 17 – Erlang Processes 20/39



Reliability through Process Links

Outline

1 Basic Concepts of Processes

2 Messaging

3 Reliability through Process Links

PP 2016/17 Unit 17 – Erlang Processes 21/39



Reliability through Process Links

Adding Reliability

Erlang has exception handling for catching errors in a piece of code

This is very similar to what Java offers, so we are not covering it here

In addition to this Erlang provides process links

This is a system for handling process failures
We are going to have a closer look at process links

PP 2016/17 Unit 17 – Erlang Processes 22/39



Reliability through Process Links

Process Links

Whenever an Erlang process dies unexpectedly, an exit signal is generated

All processes linked to the dying process receive that signal and can react
accordingly

By default, the receiver will exit as well (sending another exit signal)

So you can have a whole cascade of exiting processes

However, you can overwrite the default behaviour and react in an
appropriate way

What is the advantage of this?

Allows you to have a group of processes behave as a single application
You don’t have to worry about leftover processes still running

PP 2016/17 Unit 17 – Erlang Processes 23/39



Reliability through Process Links

Supervision

You don’t always want to shut down a process when receiving an exit signal

Someone needs to be there to restart parts of the system when receiving
exit signals

These so-called supervisor processes need to be able to overwrite the
default exiting behavior

This can be done by trapping an exit signal, i.e., you get informed, but don’t
exit yourself

Non-trapping processes are usually called worker processes

Let’s look at an example

PP 2016/17 Unit 17 – Erlang Processes 24/39



Reliability through Process Links

Russian Roulette/1

First, let’s build a process that can be killed deliberately

-module(roulette).

-export([loop/0]).

loop() ->

receive

3 ->

io:format("bang!~n"),

exit({roulette,die,at,erlang:time()});
->

io:format("click.~n"),

loop()

end.

The code is essentially a message loop:

Matching 3 kills the process by calling function exit

Anything else prints a message and goes back to the top of the loop

PP 2016/17 Unit 17 – Erlang Processes 25/39



Reliability through Process Links

Russian Roulette/2

Let’s start the process and try it out

> Gun = spawn(fun roulette:loop/0).

<0.39.0>

> Gun ! 1.

click.

1

> erlang:is process alive(Gun).

true

> Gun ! 3.

bang!

3

> erlang:is process alive(Gun).

false

Function erlang:is process alive(PID) checks whether process PID is
running

PP 2016/17 Unit 17 – Erlang Processes 26/39



Reliability through Process Links

Monitoring Processes/1

Now let’s build a monitor process that tells us whether a process dies by
trapping exit signals

-module(coroner).

-export([loop/0]).

loop() ->

process flag(trap exit,true),

receive

{monitor,Process} ->

link(Process),

io:format("Monitoring process.~n"),

loop();

{’EXIT’,From,Reason} ->

io:format("~p died: ~p~n",[From,Reason]),

io:format("Please start another one.~n"),

loop();

->

io:format("Unexpected message received.~n"),

loop()

end.
PP 2016/17 Unit 17 – Erlang Processes 27/39



Reliability through Process Links

Monitoring Processes/2

The first step in the loop is to register the process as one that will trap exit
signals:

process flag(trap exit,true)

otherwise exit signals are not received

PP 2016/17 Unit 17 – Erlang Processes 28/39



Reliability through Process Links

Monitoring Processes/3

The receive gets two types of tuples

Tuples beginning with atom monitor

{monitor,Process} ->

link(Process),

io:format("Monitoring process.~n"),

loop();

Links the coroner process (i.e., the loop/0 function that implements the
monitor) to the process Process
Hence, if Process dies, the coroner process gets a message

Tuples beginning with atom ’EXIT’

{’EXIT’,From,Reason} ->

io:format("~p died: ~p~n",[From,Reason]),

io:format("Please start another one.~n"),

loop();

PID of dying process is printed together with the reason
The user is asked to start another process

PP 2016/17 Unit 17 – Erlang Processes 29/39



Reliability through Process Links

Monitoring Processes/4

After compiling the modules coroner and roulette we create processes
and ask process Coroner to monitor process Gun

> Coroner = spawn(fun coroner:loop/0).

<0.44.0>

> Gun = spawn(fun roulette:loop/0).

<0.46.0>

> Coroner ! {monitor,Gun}.
Monitoring process.

{monitor,<0.46.0>}

> Gun ! 3.

bang!

3

<0.46.0> died: {roulette,die,at,{14,42,57}}
Please start another one.

PP 2016/17 Unit 17 – Erlang Processes 30/39



Reliability through Process Links

Coroner

The module coroner does not do much at this point

It only notices that the roulette process died

We are going to improve the module by

moving the creation of a new roulette process into this new process
automatically respawning a new roulette process if it gets killed
registering the roulette process ID with an atom called gun

So a user does not have to remember the PID to play

PP 2016/17 Unit 17 – Erlang Processes 31/39



Reliability through Process Links

Meet the Doctor/1

-module(doctor).

-export([loop/0]).

loop() ->

process flag(trap exit,true),

receive

new ->

io:format("Creating and monitoring new process.~n"),

register(gun,spawn link(fun roulette:loop/0)),

loop();

{’EXIT’,From,Reason} ->

io:format("~p died: ~p~n",[From,Reason]),

io:format("Restarting.~n"),

self() ! new,

loop();

->

io:format("Unexpected message received.~n"),

loop()

end.

PP 2016/17 Unit 17 – Erlang Processes 32/39



Reliability through Process Links

Meet the Doctor/2

spawn link creates a new process and links it to the calling process

Hence, doctor will be notified whenever a roulette process dies

register(gun,...) binds the PID returned by spawn link to the atom
gun

Users can now send messages to this process by using gun ! message

For restarting a roulette process, the doctor process just sends the
message new to itself

Now let’s have a look

PP 2016/17 Unit 17 – Erlang Processes 33/39



Reliability through Process Links

Meet the Doctor/3

> Doc = spawn(fun doctor:loop/0).

<0.44.0>

> Doc ! new.

Creating and monitoring new process.

new

> gun ! 1.

click.

1

> gun ! 3.

bang!

3

<0.48.0> died: {roulette,die,at,{15,0,32}}
Restarting.

Creating and monitoring new process.

> gun ! 1.

click.

1

PP 2016/17 Unit 17 – Erlang Processes 34/39



Reliability through Process Links

Managing Subsystems/1

Usually a supervisor monitors more
than one process

Typically it manages different
groups of processes

These subsystems can then be
cleanly restarted

On the right hand side, one of the
processes in the left subgroup
crashes . . .

. . . the whole subgroup is
terminated and restarted

PP 2016/17 Unit 17 – Erlang Processes 35/39



Reliability through Process Links

Managing Subsystems/2

Usually you should build a whole supervision tree with multiple layers of
supervisors

This gives you a finer granularity in terms of “rebooting” certain parts of
the system

PP 2016/17 Unit 17 – Erlang Processes 36/39



Reliability through Process Links

Open Telecom Platform

We were only able to cover a small part of Erlang

The Open Telecom Platform (OTP) is a powerful package that helps
Erlang reach its full potential

It’s not specific to telecom applications and helps you in

writing stable and reliable code (OTP has been thoroughly used and tested)
providing frameworks for applications
offering functionality for code upgrades

PP 2016/17 Unit 17 – Erlang Processes 37/39



Summary – Strengths of Erlang

The shared-nothing, message-passing process model is very powerful when
it comes to implementing concurrency

Concurrency means any execution order (e.g., parallel or serial) without
compromising the correctness of the program

Erlang offers a lot in terms of reliability and fault tolerance

Controlled crash

Erlang was developed with the aim to achieve industrial-strength high
performance

Erlang processes run on a virtual maching that automatically adapts to the
underlying hardware

Runs on as many cores/machines as available

Language supports some powerful features of functional and logic-oriented
languages

e.g., pattern matching, optimized for tail-recursion

OTP provides a lot of functionality to make it easier to implement
concurrent applications

PP 2016/17 Unit 17 – Erlang Processes 38/39



Summary – Weaknesses of Erlang

The syntax of the language is a weird mix of Prolog with functional
language constructs thrown in

While Erlang shines when it comes to concurrency, programming simpler
(serial) things tend to be harder than in other languages

PP 2016/17 Unit 17 – Erlang Processes 39/39


	Basic Concepts of Processes
	Messaging
	Reliability through Process Links

