
Programming Paradigms
Unit 16 — Erlang Modules, Functions and Control Structures

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 1/31

Outline

1 Modules and Functions

2 Control Structures

3 Higher-Order Functions

4 Examples

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 2/31

Modules and Functions

Outline

1 Modules and Functions

2 Control Structures

3 Higher-Order Functions

4 Examples

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 3/31

Modules and Functions

Functions and Modules

Erlang is a functional language, so functions are the main building blocks

Functions are defined within modules

Function and module names must be atoms

Functions must be exported before they can be called from outside the
module where they are defined

The standard library has a lot of predefined modules, e.g., the lists
module to work with lists

When calling a function from another module you need a qualified name,
i.e., module name and function name separated by a colon

> lists:reverse([1,2,3,4]).

[4,3,2,1]

You’ve already seen the module io for printing “Hello World!”

> io:format("Hello World!\n").
Hello World!

ok

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 4/31

Modules and Functions

Creating and using Modules

To create your own module with some functions, you need to do the
following:

Write a source file that contains function definitions and has extension .erl

Compile the module, which generates an executable file with extension
.beam

Use the module

Let’s do this for a very simple piece of code:

A function that returns its input value

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 5/31

Modules and Functions

Creating a Module

This is what the module file basic.erl looks like:

-module(basic).

-export([mirror/1]).

mirror(Anything) -> Anything.

The first line defines the name of the module, an atom

The second line tells Erlang that the function mirror

should be visible outside of the module and
has one parameter (that is the meaning of /1)

The third line defines the function mirror with one argument

The symbol -> separates the function head and the function body
Notice the similarity to Haskell functions and Prolog-style rules

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 6/31

Modules and Functions

Compiling a Module

After starting the Erlang shell from the directory of the code file you can
compile it with the command c

> c(basic).

{ok,basic}

This will create an executable file basic.beam

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 7/31

Modules and Functions

Using a Module

Now you can run the functions defined in the module like this:

> basic:mirror(1).

1

> basic:mirror(abc).

abc

> basic:mirror("string").

"string"

> mirror(1).

** exception error: undefined shell command mirror/1

Notice that the parameter Anything was bound to different types in each
call (number, atom, string)

This means that Erlang uses dynamic typing

The function name must be qualified with the module name, otherwise you
get an error

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 8/31

Modules and Functions

Local Functions

A module can define several functions

Some functions might be local, i.e., not visible outside

-module(double).

-export([double/1]).

double(X) -> times(X, 2).

times(X, N) -> X * N.

This module defines 2 functions

double can be called from outside the module
times is local to the module

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 9/31

Modules and Functions

Function Declaration Revisited

So far, each function consisted of a single line

In general, a function declaration consists of a sequence of function clauses
separated by semicolons, and terminated by period (.).

Name(Arg11, ..., Arg1N) [when GuardSeq1] ->

Expr11, ..., Expr1M;

...;

Name(ArgK1, ..., ArgKN) [when GuardSeqK] ->

ExprK1, ..., ExprKM.

Each clause represents a different matching possibility (cf. Prolog, Haskell)

Clauses are separated by a semicolon (;)

A function clause consists of a head and a body, separated by ->.

A clause head consists of the function name, an argument list, and an
optional guard sequence beginning with the keyword when.

A clause body consists of a sequence of expressions separated by comma (,)

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 10/31

Modules and Functions

Function with Multiple Matching Possiblities

This is a simple example with multiple matching possibilities/clauses

-module(matching function).

-export([number/1]).

number(one) -> 1;

number(two) -> 2;

number(three) -> 3.

You can execute it like this

> c(matching function).

{ok,matching function}

> matching function:number(one).

1

> matching function:number(four).

** exception error: no function clause matching ...

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 11/31

Modules and Functions

Recursive Functions

Similar to Prolog, recursion plays a big role in Erlang

Erlang is optimized for tail recursion

-module(yam).

-export([fac/1]).

-export([fib/1]).

fac(0) -> 1;

fac(N) -> N * fac(N-1).

fib(0) -> 1;

fib(1) -> 1;

fib(N) -> fib(N-1) + fib(N-2).

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 12/31

Modules and Functions

Function Evaluation

Function evaluation works essentially in the same way as in Prolog
The function clauses are scanned sequentially (from top to down) until a
clause is found that fulfills the following two conditions:

the pattern in the clause head can be successfully matched
the guard sequence, if any, is true

If such a clause cannot be found, a runtime error occurs
If such a clause is found, the corresponding clause body is evaluated:

the expressions in the body are evaluated sequentially (from left to right)
the value of the last expression is returned

fac(2) % match clause 2

2 * fac(1) % match clause 2

1 * fac(0) % match clause 1

1

1

2

2

This function is not safe. What happens if you call, e.g., yam:fac(-3)?

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 13/31

Modules and Functions

Functions with Guards

A guard (sequence) is an optional condition that can be placed in the head
of a function clause

They can be used to make functions more robust

-module(yam).

-export([fac2/1]).

fac2(0) -> 1;

fac2(N) when N > 0 -> N * fac2(N-1).

Now you get the following:

> yam:fac2(3).

6

> yam:fac2(-3).

** exception error: no function clause matching yam:fac2(-3)

We will see later on how to avoid even the runtime error

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 14/31

Control Structures

Outline

1 Modules and Functions

2 Control Structures

3 Higher-Order Functions

4 Examples

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 15/31

Control Structures

Control Structures: case

Control structures look similar to functions

The case statement in Erlang looks like this

> Animal = "dog".

"dog"

> case Animal of

> "dog" -> underdog;

> "cat" -> thundercat;

> "elephant" -> dumbo;

> -> something else

> end.

underdog

The case statement uses pattern matching to distinguish various cases

A pattern might optionally be followed by a guard

The underscore () matches anything

The pattern can be more complex, e.g., lists or tuples

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 16/31

Control Structures

Control Structures: if

In contrast to the case statement, the if statement uses guards

i.e., boolean conditions that must be satisfied for a match to succeed

> if

> X > 0 -> positive;

> X < 0 -> negative;

> true -> zero

> end.

One of the branches of a case or if statement has to be true, otherwise a
runtime error will occur if no match is found

The reason is that case and if are functions that have to return a value

In the above example, the last guard is simply set to the expression true

true always succeeds
alternatively, X == 0 could be used

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 17/31

Higher-Order Functions

Outline

1 Modules and Functions

2 Control Structures

3 Higher-Order Functions

4 Examples

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 18/31

Higher-Order Functions

Higher-order Functions

A function that returns functions or takes functions as arguments is called
a higher-order function

In Ruby this was achieved passing code blocks
In Prolog, you can pass as argument a list that contains functor and
arguments of a predicate (which then can be composed to a predicate using
the univ operator =..)
In Haskell, we have seen functions such as map that take a (anonymous)
function and a list and apply the function to the list
In Erlang arbitrary functions can be assigned to variables and be passed
around like any other data type

Let’s start with anonymous functions (functions without a name)

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 19/31

Higher-Order Functions

Anonymous Functions

Let’s define a function that negates its argument

> Negate = fun(I) -> -I end.

#Fun<erl eval.6.111823515>

> Negate(1).

-1

> Negate(-3).

3

The keyword fun defines an anonymous function that has no name

This function is assigned to variable Negate

Negate actually is the function, not the value returned by the function

By assigning the function to a variable, the function

can be passed as a parameter like any other data, and
it can even be called with different parameters

We will show this next

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 20/31

Higher-Order Functions

Lists and Higher-order Functions

A large number of higher-order functions are defined for lists in the module
lists

lists:foreach takes a function and a list as arguments and iterates over
the list applying the function to each element

> Numbers = [1,2,3,4].

[1,2,3,4]

> Print = fun(X) -> io:format("~p~n", [X]) end.

> lists:foreach(Print,Numbers).

1

2

3

4

ok

io:format/2 is a function for formated printing

~p pretty prints an argument, ~n prints a newline

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 21/31

Higher-Order Functions

Mapping Lists

The map function is another function that takes a function and a list as
arguments

However, it applies the function to each element and builds a new list with
the results

The following example increases each element of a list by 1

> Numbers = [1,2,3,4].

[1,2,3,4]

> lists:map(fun(X) -> X+1 end,Numbers).

[2,3,4,5]

This example shows also that an anonymous function can be defined
directly when a function is called

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 22/31

Higher-Order Functions

Filtering Lists

Lists can also be filtered using a boolean function.

The function lists:filter builds a new list with all elements that satisfy
a given function

> Small = fun(X) -> X < 3 end.

> Small(4).

false

> Small(2).

true

> lists:filter(Small,Numbers).

[1,2]

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 23/31

Higher-Order Functions

Testing Lists

The function Small can also be used to test whether
all elements (lists:all) of a list are less than 3 with , or
any element (lists:any) of a list is less than 3

> lists:all(Small, [0,1,2]).

true

> lists:all(Small, [0,1,2,3]).

false

> lists:any(Small, [0,1,2,3]).

true

> lists:any(Small, [3,4,5]).

false

The two functions applied on empty lists

> lists:any(Small, []).

false

> lists:all(Small, []).

true

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 24/31

Higher-Order Functions

Extract and Skip Prefix of Lists

You can also use a filter condition to

extract a prefix of a list (lists:takewhile), i.e., make a list of all elements
at the head of a list that satisfy the filter or
to skip that elements (lists:dropwhile)

> lists:takewhile(Small, [1,2,3,4]).

[1,2]

> lists:dropwhile(Small, [1,2,3,4]).

[3,4]

> lists:takewhile(Small, [1,2,1,4,1]).

[1,2,1]

> lists:dropwhile(Small, [1,2,1,4,1]).

[4,1]

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 25/31

Higher-Order Functions

Fold Functions on Lists/1

Fold functions are a family of functions that accumulate a return value
while processing a data structure, such as a list

A fold function takes as argument:

a function
an initial accumulator value
and a list

Lets sum up the elements of our list of numbers

> Adder = fun(Item,SumSoFar) -> Item + SumSoFar end.

> InitSum = 0.

> lists:foldl(Adder,InitSum,[1,2,3,4]).

10

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 26/31

Higher-Order Functions

Fold Functions on Lists/2

Fold functions for lists come in two flavors: foldl and foldr

Both of them take the same parameters: a function, initial accumulator
value, and a list

The difference is the order in which they combine the list elements with the
accumulator

foldl accumulates elements from left to right

foldr accumulates elements from right to left

> P = fun(A, AccIn) -> io:format(" p ", [A]), AccIn end.

> lists:foldl(P, void, [1,2,3]).

> 1 2 3 void

> lists:foldr(P, void, [1,2,3]).

> 3 2 1 void

Notice that the function assigned to variable P has side-effects, hence is not
pure functional!

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 27/31

Examples

Outline

1 Modules and Functions

2 Control Structures

3 Higher-Order Functions

4 Examples

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 28/31

Examples

Example: Length of Lists

Let’s write a function to compute the length of a list (i.e., length/1)

-module(mylists).

-export([len/1]).

len([]) -> 0;

len([|T]) -> 1 + len(T).

This is how this function is executed:

len([1,2,3]) = len([1 | [2,3]])

= 1 + len([2 | [3]])

= 1 + 1 + len([3 | []])

= 1 + 1 + 1 + len([])

= 1 + 1 + 1 + 0

= 1 + 1 + 1

= 1 + 2

= 3

This is function is not tail-recursive
PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 29/31

Examples

Example: Length of Lists – Tail-recursive

To come up with a tail-recursive version, we use an accumulator

-module(mylists).

-export([tail len/1]).

tail len(L) -> tail len(L, 0).

tail len([], Acc) -> Acc;

tail len([|T], Acc) -> tail len(T, Acc+1).

This is how this function is executed:

tail len([1,2,3]) = tail len([1,2,3], 0)

tail len([1|[2,3]], 0) = tail len([2,3], 0+1])

tail len([2|[3], 1]) = tail len([3], 1+1])

tail len([3|[]], 2]) = tail len([], 2+1])

tail len([],3]) = 3

This function is tail-recursive
PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 30/31

Examples

Example: Reverse a List

We write a function reverse/1 to reverse a list

-module(mylists).

-export([reverse/1]).

reverse(List) -> reverse(List, []).

reverse([H|T], Acc) -> reverse(T, [H|Acc]);

reverse([], Acc) -> Acc.

This is how this function is executed:

reverse([1,2,3]) = reverse([1,2,3], [])

reverse([1|[2,3]], []) = reverse([2,3], [1|[]])

reverse([2|[3]], [1]) = reverse([3], [2|[1]])

reverse([3|[]], [2,1]) = reverse([], [3|[2,1]])

reverse([], [3,2,1]) = [3,2,1]

PP 2016/17 Unit 16 – Erlang Modules, Functions and Control Structures 31/31

	Modules and Functions
	Control Structures
	Higher-Order Functions
	Examples

