Programming Paradigms
Unit 16 — Erlang Modules, Functions and Control Structures

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 1/31

I
QOutline

© Modules and Functions

© Control Structures

© Higher-Order Functions

@ Examples

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 2/31

)
QOutline

© Modules and Functions

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 3/31

Functions and Modules
Erlang is a functional language, so functions are the main building blocks

Functions are defined within modules

Function and module names must be atoms

e © ¢ ¢

Functions must be exported before they can be called from outside the
module where they are defined

@ The standard library has a lot of predefined modules, e.g., the 1ists
module to work with lists

@ When calling a function from another module you need a qualified name,
i.e., module name and function name separated by a colon

> lists:reverse([1,2,3,4]).
[4,3,2,1]
@ You've already seen the module io for printing “Hello World!”

> io:format("Hello World!\n").
Hello World!
ok

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 4/31

Creating and using Modules

@ To create your own module with some functions, you need to do the
following:

@ Write a source file that contains function definitions and has extension .erl
@ Compile the module, which generates an executable file with extension
.beam
9 Use the module
@ Let's do this for a very simple piece of code:
@ A function that returns its input value

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 5/31

Creating a Module

@ This is what the module file basic.erl looks like:

-module (basic) .
-export ([mirror/1]).

mirror (Anything) -> Anything.

@ The first line defines the name of the module, an atom
@ The second line tells Erlang that the function mirror

9 should be visible outside of the module and
@ has one parameter (that is the meaning of /1)

@ The third line defines the function mirror with one argument

@ The symbol -> separates the function head and the function body
9 Notice the similarity to Haskell functions and Prolog-style rules

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 6/31

Compiling a Module

@ After starting the Erlang shell from the directory of the code file you can
compile it with the command ¢

> c(basic).
{ok,basic}

@ This will create an executable file basic.beam

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 7/31

Using a Module

@ Now you can run the functions defined in the module like this:

> basic:mirror(1).
1

> basic:mirror(abc).
abc

> basic:mirror("string").
"string"

> mirror(1).
** exception error: undefined shell command mirror/1

@ Notice that the parameter Anything was bound to different types in each
call (number, atom, string)

@ This means that Erlang uses dynamic typing

@ The function name must be qualified with the module name, otherwise you
get an error

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 8/31

Local Functions

@ A module can define several functions

@ Some functions might be local, i.e., not visible outside

-module (double) .
-export ([double/1]).

double(X) -> times(X, 2).

times (X, N) -> X * N.
@ This module defines 2 functions

@ double can be called from outside the module
9 times is local to the module

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 9/31

Function Declaration Revisited

@ So far, each function consisted of a single line

@ In general, a function declaration consists of a sequence of function clauses
separated by semicolons, and terminated by period (.).

Name (Argll, ..., ArgiN) [when GuardSeql] ->
Exprill, ..., ExpriM;

L]

Name (ArgK1, ..., ArgKN) [when GuardSegK] ->
ExprK1l, ..., ExprKM.

@ Each clause represents a different matching possibility (cf. Prolog, Haskell)
@ Clauses are separated by a semicolon (;)
@ A function clause consists of a head and a body, separated by ->.

@ A clause head consists of the function name, an argument list, and an
optional guard sequence beginning with the keyword when.

@ A clause body consists of a sequence of expressions separated by comma ()

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 10/31

Function with Multiple Matching Possiblities

@ This is a simple example with multiple matching possibilities/clauses

-module (matching function).
-export ([number/1]) .

number (one) -> 1;
number (two) -> 2;
number (three) -> 3.

@ You can execute it like this

> c(matching function).
{ok,matching function}

> matching function:number (one) .
1

> matching function:number(four) .
** exception error: no function clause matching ...

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 11/31

Recursive Functions

@ Similar to Prolog, recursion plays a big role in Erlang
@ Erlang is optimized for tail recursion
-module (yam) .

-export ([fac/1]).
—-export ([fib/1]).

fac(0) -> 1;
fac(N) -> N * fac(N-1).

fib(0) -> 1;

fib(1) -> 1;
fib(N) -> fib(N-1) + fib(N-2).

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures

12/31

Function Evaluation

@ Function evaluation works essentially in the same way as in Prolog
@ The function clauses are scanned sequentially (from top to down) until a
clause is found that fulfills the following two conditions:
@ the pattern in the clause head can be successfully matched
o the guard sequence, if any, is true
@ If such a clause cannot be found, a runtime error occurs
@ If such a clause is found, the corresponding clause body is evaluated:
@ the expressions in the body are evaluated sequentially (from left to right)
@ the value of the last expression is returned

fac(2) % match clause 2
2 * fac(1) % match clause 2
1 * fac(0) % match clause 1
1
1
2
2

@ This function is not safe. What happens if you call, e.g., yam:fac(-3)7?

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 13/31

Functions with Guards

@ A guard (sequence) is an optional condition that can be placed in the head
of a function clause

@ They can be used to make functions more robust

-module (yam) .
-export ([fac2/1]).

fac2(0) -> 1;
fac2(N) when N > 0 -> N * fac2(N-1).
@ Now you get the following:

> yam:fac2(3).
6

> yam:fac2(-3).
** exception error: mno function clause matching yam:fac2(-3)

@ We will see later on how to avoid even the runtime error

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 14/31

)
QOutline

© Control Structures

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 15/31

Control Structures: case

@ Control structures look similar to functions

@ The case statement in Erlang looks like this

> Animal = "dog".

Ildogll

> case Animal of

> "dog" -> underdog;

> "cat" -> thundercat;

> "elephant" -> dumbo;

> _ -> something_else
> end.

underdog

@ The case statement uses pattern matching to distinguish various cases
@ A pattern might optionally be followed by a guard

@ The underscore (_) matches anything

@ The pattern can be more complex, e.g., lists or tuples

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 16/31

Control Structures: if

@ In contrast to the case statement, the if statement uses guards
@ i.e., boolean conditions that must be satisfied for a match to succeed

> if

> X > 0 -> positive;
> X < 0 -> negative;
> true -> zero

> end.

@ One of the branches of a case or if statement has to be true, otherwise a
runtime error will occur if no match is found

@ The reason is that case and if are functions that have to return a value
@ In the above example, the last guard is simply set to the expression true

@ true always succeeds
o alternatively, X == 0 could be used

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 17/31

)
QOutline

© Higher-Order Functions

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 18/31

Higher-order Functions

@ A function that returns functions or takes functions as arguments is called
a higher-order function

@ In Ruby this was achieved passing code blocks

@ In Prolog, you can pass as argument a list that contains functor and
arguments of a predicate (which then can be composed to a predicate using
the univ operator =. .)

@ In Haskell, we have seen functions such as map that take a (anonymous)
function and a list and apply the function to the list

@ In Erlang arbitrary functions can be assigned to variables and be passed
around like any other data type

@ Let's start with anonymous functions (functions without a name)

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 19/31

Anonymous Functions

@ Let's define a function that negates its argument

> Negate = fun(I) -> -I end.
#Fun<erl_eval.6.111823515>

> Negate(1).
-1

> Negate(-3).
3

@ The keyword fun defines an anonymous function that has no name
@ This function is assigned to variable Negate
@ Negate actually is the function, not the value returned by the function

@ By assigning the function to a variable, the function

@ can be passed as a parameter like any other data, and
@ it can even be called with different parameters

@ We will show this next

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 20/31

Lists and Higher-order Functions

@ A large number of higher-order functions are defined for lists in the module
lists

@ lists:foreach takes a function and a list as arguments and iterates over
the list applying the function to each element

> Numbers = [1,2,3,4].

[1,2,3,4]

> Print = fun(X) -> io:format("“p™n", [X]) end.
> lists:foreach(Print,Numbers).

1

2

3

4
ok

® io:format/2 is a function for formated printing
@ “p pretty prints an argument, “n prints a newline

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 21/31

Mapping Lists

@ The map function is another function that takes a function and a list as
arguments

@ However, it applies the function to each element and builds a new list with
the results

@ The following example increases each element of a list by 1

> Numbers = [1,2,3,4].

[1,2,3,4]

> lists:map(fun(X) -> X+1 end,Numbers) .
[2,3,4,5]

@ This example shows also that an anonymous function can be defined
directly when a function is called

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 22/31

Filtering Lists

@ Lists can also be filtered using a boolean function.

@ The function lists:filter builds a new list with all elements that satisfy
a given function
> Small = fun(X) -> X < 3 end.

> Small(4).
false
> Small(2).
true

> lists:filter(Small,Numbers).
[1,2]

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 23/31

Testing Lists

@ The function Small can also be used to test whether
o all elements (1ists:all) of a list are less than 3 with , or
o any element (lists:any) of a list is less than 3

> lists:all(Small, [0,1,2]).
true

> lists:all(Small, [0,1,2,3]).
false
> lists:any(Small, [0,1,2,3]).
true

> lists:any(Small, [3,4,5]).
false

@ The two functions applied on empty lists

> lists:any(Small, [1).
false
> lists:all(Small, [1).
true

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 24/31

Extract and Skip Prefix of Lists

@ You can also use a filter condition to

@ extract a prefix of a list (1ists:takewhile), i.e., make a list of all elements
at the head of a list that satisfy the filter or
@ to skip that elements (lists:dropwhile)

> lists:takewhile(Small, [1,2,3,4]).
[1,2]

> lists:dropwhile(Small, [1,2,3,4]).
[3,4]

> lists:takewhile(Small, [1,2,1,4,1]).
[1,2,1]

> lists:dropwhile(Small, [1,2,1,4,1]).
[4,1]

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 25/31

Fold Functions on Lists/1

@ Fold functions are a family of functions that accumulate a return value
while processing a data structure, such as a list
@ A fold function takes as argument:

@ a function
@ an initial accumulator value
@ and a list

@ Lets sum up the elements of our list of numbers

> Adder = fun(Item,SumSoFar) -> Item + SumSoFar end.
> InitSum = 0.

> lists:foldl(Adder,InitSum, [1,2,3,4]).

10

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 26/31

Fold Functions on Lists/2

@ Fold functions for lists come in two flavors: foldl and foldr

@ Both of them take the same parameters: a function, initial accumulator
value, and a list

@ The difference is the order in which they combine the list elements with the
accumulator

@ foldl accumulates elements from left to right

@ foldr accumulates elements from right to left

> P = fun(A, AccIn) -> io:format(" p ", [A]), AccIn end.

lists:foldl(P, void, [1,2,3]).
1 2 3 void

> lists:foldr(P, void, [1,2,3]).
> 3 2 1 void

VvV Vv

@ Notice that the function assigned to variable P has side-effects, hence is not
pure functional!

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 27/31

QOutline

e Examples

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 28/31

Example: Length of Lists

@ Let's write a function to compute the length of a list (i.e., length/1)
-module (mylists).
-export ([len/1]).

len([]1) -> 0O;
len([_|IT]) -> 1 + len(T).
@ This is how this function is executed:

len([1,2,3]) = len([1 | [2,3]]1)
=1 + len([2 | [3]])

=1+ 1+ 1len([3 | O
=1+ 1+ 1+ 1len([])
=1+1+1+0
=1+1+1

=1+ 2

=3

@ This is function is not tail-recursive

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 29/31

Example: Length of Lists — Tail-recursive

@ To come up with a tail-recursive version, we use an accumulator

-module (mylists).
-export([tail_len/1]).

tail_len(L) -> tail_len(L, 0).

tail_len([], Acc) -> Acc;
tail_len([_IT], Acc) -> tail_len(T, Acc+1).

@ This is how this function is executed:

tail len([1,2,3]) = tail len([1,2,3], 0)
tail_len([1][2,3]], 0) tail_len([2,3], 0+1])
tail_len([2][3], 11) tail_len([3], 1+1])
tail len([3][1], 21) tail_len([], 2+1])
tail_len([],3]) 3

@ This function is tail-recursive

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 30/31

Example: Reverse a List

@ We write a function reverse/1 to reverse a list

-module (mylists) .
-export ([reverse/1]).

reverse(List) -> reverse(List, []).

reverse([H|T], Acc) -> reverse(T, [H|Accl);
reverse([], Acc) -> Acc.

@ This is how this function is executed:

reverse([1,2,3]) = reverse([1,2,3], [1)
reverse([11[2,3]], [1) = reverse([2,3], [1I[]11)
reverse([2|[3]], [1]) = reverse([3], [2]|[1]1])
reverse([31[11, [2,1]) = reverse(ll, [31[2,111)
reverse([], [3,2,1]) (3,2,1]

PP 2016/17 Unit 16 — Erlang Modules, Functions and Control Structures 31/31

	Modules and Functions
	Control Structures
	Higher-Order Functions
	Examples

