
Programming Paradigms
Unit 13 — Input/Output and Error Handling

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2016/17 Unit 13 – Input/Output and Error Handling 1/20



Outline

1 Input/Output

2 Handling Errors

PP 2016/17 Unit 13 – Input/Output and Error Handling 2/20



Input/Output

Outline

1 Input/Output

2 Handling Errors

PP 2016/17 Unit 13 – Input/Output and Error Handling 3/20



Input/Output

Input/Output

Remember that Haskell is pure (referential transparency), that is:
Functions take inputs and compute outputs (and for the same input always
the same output); nothing else happens in-between
In particular, they have no side-effects/external effects

do not modify global variables or depend on it

may not print anything on the screen

may not read from the keyboard, or filesystem, or network

Adding IO to a purely functional language is a challenge, since IO
operations are not functions

Input does not need an input parameter, and may return different values
Output does not return a value, but clearly has side effects: it changes the
state of the output device

If IO operations were functions, this would create problems, e.g.,
two calls of an input function getchar, getchar would be executed only
once as the result is reused, which makes no sense for IO;
a fake parameter could be introduced, e.g., getchar 1, getchar 1, etc., to
ensure that each call is actually executed

As we will see, it is possible to do IO in Haskell, but it looks very different
than in most other languages

PP 2016/17 Unit 13 – Input/Output and Error Handling 4/20



Input/Output

IO Type and Actions/1

The solution to I/O in Haskell is a special type, called IO

Values of type IO a are called IO actions and are “descriptions of effectful
computations”

If executed, an IO action IO a

performs some effectful I/O operations (side-effect, impure), and
produces a return value of type a (pure)

The description itself is safe as it has no effects: IO is just a description on
how to produce a

Compare it to a cake vs. a recipe on how to make a cake

c :: Cake

r :: Recipe Cake

Hence, IO actions in Haskell separate the functional (“pure”) parts of a
program from the non-functional (“impure”) parts

PP 2016/17 Unit 13 – Input/Output and Error Handling 5/20



Input/Output

IO Type and Actions/2

Haskell has getLine to read a string and putStrLn to print a string

Lets have a look at the types of getLine and putStrLn?

> :t getLine

getLine :: IO String

getLine has no input parameter and returns an IO action
The IO action does some “dirty” stuff in IO, but the result is a “clean” data
type, namely a string

> :t putStrLn

putStrLn :: String -> IO ()

putStrLn gets a string as input parameter and returns an IO action
The IO action does some “dirty” stuff and returns ()

The type () is called unit and has one value, namely () (similar to void)

PP 2016/17 Unit 13 – Input/Output and Error Handling 6/20



Input/Output

Executing an IO Action

Recall that the value of an IO action is just a recipe, which does not do
anything

But how can we actually execute IO actions?

For an executable Haskell program, there is only one way to execute an IO
action: assign it to main, which will run it for you

module Main where

main = putStrLn "Hello World!"

The use of the name main is important: main is defined to be the entry
point of a Haskell program (similar to the main function in C)

Actually, main forwards the execution of IO actions to the Haskell runtime
system

You can put the above in a file helloworld.hs and run it through ghc to
get an executable program

PP 2016/17 Unit 13 – Input/Output and Error Handling 7/20



Input/Output

Executing Sequences of IO Actions/1

Running a single IO action would not lead to very exciting programs

Haskell allows you to “glue” together IO actions using the do notation

main = do

putStrLn "Hi there, what’s your name?"

name <- getLine

putStrLn ("Hello " ++ name ++ "!")

The lines in a do-block work similar to an imperative execution

Allows to execute a sequence of IO actions, one after the other

<- extracts the “pure” part (the string) from getLine’s return value,
which has type IO String

Can only be used in a do-block

Notice that name = getLine and putStrLn ("Hello " ++ getLine )

would not work

PP 2016/17 Unit 13 – Input/Output and Error Handling 8/20



Input/Output

Executing Sequences of IO Actions/2

The IO action carries along the “baggage of the impure” context

So you don’t have to worry about it

If you want to do a “pure” assignment in the context of IO, you have to
use let

module Main where

import Data.Char

main = do

putStrLn "What’s your name?"

name <- getLine

let bigName = map toUpper name

putStrLn ("Hi " ++ bigName ++ "!")

The let statement in a do-block allows you to create a new variable bound
to a “pure” value

PP 2016/17 Unit 13 – Input/Output and Error Handling 9/20



Input/Output

Executing Sequences of IO Actions/3

In summary, a do-block

introduces a sequence of statements
and executes these statements in order

A statement can be one of the following:

an IO action
a <-, binding the (“pure”) result of an action
a let, expressing “pure” definitions

PP 2016/17 Unit 13 – Input/Output and Error Handling 10/20



Input/Output

Executing IO Actions in GHCI

An IO action can also be executed directly in the interactive Haskell shell,
like any other function

> putStrLn "Hello World!"

Hello World!

We can also use IO functions in the body of other functions

> let hw = putStrLn "Hello World!"

> hw

Hello World!

So, there’s no need to go via main in the shell

That means, in the shell we are in an IO environment

Consequently, we had to use let to do “pure” stuff

PP 2016/17 Unit 13 – Input/Output and Error Handling 11/20



Input/Output

File IO – Reading

Lets look at file IO, using an example that counts the # of lines of a file

module Main where

import System.IO

main = do

theInput <- readFile "countlines.hs"

putStrLn (countLines theInput)

countLines :: String -> String

countLines str = show (length (lines str))

import System.IO is a so-called language pragma, which imports features
that are not part of the standardized Haskell language

The readFile function reads a file and returns the contents of the file as a
string; the file is read lazily, on demand

The function lines :: String -> [String] breaks a string on newline
and returns an array of strings

The function length :: [a] -> Int returns the length of a finite list

PP 2016/17 Unit 13 – Input/Output and Error Handling 12/20



Input/Output

File IO – Writing

Writing to a file is simple

module Main where

import System.IO

main = do

putStrLn "Writing to a file ..."

putStrLn "What do you want to write?"

what <- getLine

putStrLn "To which file?"

file <- getLine

writeFile file what

writeFile will overwrite an existing file

Use appendFile if you’d like to append instead

PP 2016/17 Unit 13 – Input/Output and Error Handling 13/20



Input/Output

Monads

The principle used for IO actions can be generalized and not only applied to
IO

Haskell uses the concept of a monad to handle “impurity”

For example, for IO, non-determinism, and exceptions

We are going to introduce the general principle a bit later

First, we are going to look at another example where Haskell meets the
messy “real world”

PP 2016/17 Unit 13 – Input/Output and Error Handling 14/20



Handling Errors

Outline

1 Input/Output

2 Handling Errors

PP 2016/17 Unit 13 – Input/Output and Error Handling 15/20



Handling Errors

Handling Errors

Sometimes things go wrong, i.e., a function is not able to return a value

For example, if we call head on an empty list, we get an error

We don’t necessarily want the program to just stop working and output an
error in a case like that

However, a function always has to return a value

So we have to be able to handle the concept of failure (which is “impure”
in Haskell’s eyes)

PP 2016/17 Unit 13 – Input/Output and Error Handling 16/20



Handling Errors

Errors and the MayBe Type

Haskell offers the type constructor Maybe that has a type parameter a:

data Maybe a = Nothing | Just a

Maybe a is a normal data type, but it ”lifts” a data type a into a new
context

A value of type Maybe a represents a value of type a with the the context
of a possible failure attached to it

A value of Just 1 means that the number 1 is there
The extra value Nothing represents the lack of value of type a or a
computation failure or . . .

The type system then requires that you check for that extra value, which
prevents a remarkable number of bugs

Many other languages handle this sort of ”no-value” value with NULL

PP 2016/17 Unit 13 – Input/Output and Error Handling 17/20



Handling Errors

Handling Errors with the MayBe Type/1

Now we can “wrap” the result of a function call inside of a Maybe:

if the function call was successful, we hand it to the value constructor Just
otherwise, it becomes Nothing

Let’s write an alternative version of head that can cope with empty lists

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead (x:xs) = Just x

> safeHead [1,2,3]

Just 1

> safeHead []

Nothing

PP 2016/17 Unit 13 – Input/Output and Error Handling 18/20



Handling Errors

Handling Errors with the MayBe Type/2

However, this comes at a price: we’ve introduced “impurity” into our
function

For example, the following expression will raise an error

doubleMe (safeHead [1,2,3])

The result of safeHead is Just 1 (of type MayBe), but doubleMe expects
a pure integer

So, how can we use the “impure” result of safeHead in other pure
functions?

Hint: Maybe is an instance of the type class Functor

Quick reminder: a functor can be seen as content “wrapped” in a box
So, Haskell does not allow the concept of failure to escape its impure box
So we have to get inside of the box

PP 2016/17 Unit 13 – Input/Output and Error Handling 19/20



Handling Errors

Handling Errors with the MayBe Type/3

The typeclass Functor provides the function fmap to get inside the “box”

fmap gets us on the inside of Maybe

> fmap doubleMe (safeHead [1,2,3])

Just 2

safeHead [1,2,3] returns Just 1

fmap pushes the execution of doubleMe inside the “Just box”

> fmap doubleMe (safeHead [])

Nothing

If there is Nothing inside, fmap will not even apply the function, but return
Nothing

PP 2016/17 Unit 13 – Input/Output and Error Handling 20/20


	Input/Output
	Handling Errors

