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Functions and Pattern Matching

@ Now that we have modules, let's write slightly more sophisticated functions

@ Haskell does pattern matching like Prolog
@ When you call a function, Haskell goes from top to bottom to find a
signature (i.e., pattern) that matches the call
9 The order of the function definitions matters
@ Different from Prolog
@ Only one function definition is executed (i.e., no backtracking!)

@ The following function computes the factorial of a number

module Factorial (
factorial
) where

factorial :: Integer -> Integer
factorial O 1
factorial x = x * factorial (x-1)
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Pattern Matching and Guards

@ If you need to match in a different or particular order, you can use guards
9 Guards are boolean conditions that constrain the argument, and hence the
pattern matching process
@ Guards are indicated by pipes | that follow a function's name and its
parameters
@ If the guard is satisfied, the corresponding function body is executed
o Otherwise, pattern machting jumps to the next guard

module FactorialGuards (
factorial
) where

factorial :: Integer -> Integer
factorial x
| x > 1 =x * factorial (x-1)
| otherwise = 1

@ Often, the last guard is otherwise, which catches everything
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Lazy Evaluation of Functions/1

@ We are now going to unleash more of the power of Haskell
@ Lets write a function for the Fibonacci numbers using lazy evaluation

@ Lazy evaluaton means that expressions are not evaluated when they are
bound to variables, but when their results are needed by other computations

o It is often used in combination with list construction to construct an infinite
list, which however never need to be computed completely

module Fibonacci (
lazyFib,

fib

) where

lazyFib :: Integer -> Integer -> [Integer]
lazyFib x y = x:(lazyFib y (x + y))

fib :: Int -> Integer
fib x = head(drop (x-1) (lazyFib 1 1))
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Lazy Evaluation of Functions/2

® lazyFib generates an infinite sequence of Fibonacci numbers
> lazyFib 1 1
[1,1,2,3,5,8,13,21,34,55,89,144, ...

@ Due to lazy evaluation, we never actually generate the whole list

@ fib drops the first x-1 elements of the “infinite” list of Fibonacci numbers,
and then takes the head of the remaining list

> fib 4
3
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Function Composition/1

@ Combining lots of functions to get a result is a common pattern in
functional languages

@ This is called function composition
@ As this is very common, Haskell has a shortcut notation

@ Instead of writing
f(gh(i(j(kAMmM@m@(x)))IIIIN)
you can write

f.g.h.i.j.k.1.m.n.o x
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Function Composition/2

@ So our Fibonacci code could be rewritten into

module Fibonacci (
lazyFib,

fib

) where

lazyFib :: Integer -> Integer -> [Integer]
lazyFib x y = x:(lazyFib y (x + y))

fib :: Int -> Integer
fib x = (head.drop (x-1)) (lazyFib 1 1)
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Anonymous Functions or Lambdas

@ Anonymous functions are termed lambdas in Haskell and do not have a
name

@ They are useful if a function is needed only once
@ Usually used to pass a function as parameter to a higher-order function

@ The syntax is

(\parameter_1,...,parameter n -> function body)

@ Lets write a function that just returns the input parameter

> (\x -> x) "mirror, mirror on the wall"
"mirror, mirror on the wall"

> (\x -> x ++ " world!") "Hello"
"Hello world!"
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Higher-Order Functions/1

@ Haskell (as functional language) supports higher-order functions, i.e.,
functions that can take functions as parameters or return functions

@ Examples of built-in higher-order functions are the usual list functions, such
as map, foldl, foldr, filter
@ map expects

@ a function and a list as input and

9 returns a list which is the result of applying the function to each element in
the input list

>map (\x -> x * x) [1,2,3]
[1,4,9]

> map (+ 1) [1,2,3]
[2,3,4]
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Higher-Order Functions/2

@ foldl expects

@ as input a function with two input parameter, an initial accumulator value,
and an input list

@ and returns a single value resulting from applying the function to each
element in the list and the accumulator

> foldl (\x sum -> sum + x) 0 [1..10]
55

> foldl (+) 0 [1,2,3]
6
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Curried Functions/1

@ Every function in Haskell officially only takes one parameter
@ We've already defined functions with multiple input parameters, so how
does this work?
@ Haskell uses the concept of curried functions
@ A function with multiple arguments is split into multiple functions with one

argument each
9 That is, functions are applied partially, i.e., one parameter at a time

@ Let's have a look at an example

PP 2016/17 Unit 12 — Functions and Data Types in Haskell 13/45



Curried Functions/2

@ Consider a function to multiply two numbers

> let prod x y = x * y

@ What is really going on behind the scences, if Haskell computes the
product of two numbers, say prod 2 47

© Apply prod 2, which returns the function (\y -> 2 * y)
Q Apply (\y -> 2 * y) 4, which gives 2 * 4, yielding the final result 8

@ So what is actually computed is
(prod 2) 4

o (prod 2) is a partial evaluation of a function, i.e.,

@ only one argument is provided and substituted in the function definition
@ the partially evaluated function is returned
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Type of Functions Revisited

@ Let's have a look at the type of the function prod

> :t prod
prod :: Num a => a -> a -> a

@ What this really says is the following:

@ prod takes an inputer parameter of type a and returns a function that takes
an input parameter of type a and returns a value of type a

@ To make this more explicit, it could be written as
Num a => a -> (a -> a)

@ ... and the function can also be called as

> (prod 2) 4
8
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Advantages of Curried Functions

@ We can create new functions on the fly, already partially evaluating a
function in a different context

@ It makes formal proofs about programs simpler, because all functions are
treated in the same way

@ There are some techniques used in Haskell where currying becomes
important
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Partial Application of Functions

@ Partial application of functions binds some of the arguments but not all
and returns a function that is partially evaluated

@ Consider again the function prod to multiply two numbers
> let prod x y = x * y
@ We can partially apply prod to create some new functions

> let double = prod 2
> let triple = prod 3

@ These two function definitions apply prod, but only with one parameter
@ This subsitutes the first parameter in the definition of prod and
9 returns a partially evaluted function, e.g., prod 2 givesprod y = 2 * y

@ The newly defined functions work just as you expect

> double 3
6

> triple 4
12
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User-Defined Types

@ You can declare your own data types using the keyword data
@ The simplest version is an enumeration: a finite list of values separated by
a vertical bar ()

data Verdict = Guilty | Innocent

@ That means, a variable of type Verdict will have a single value, either
Guilty or Innocent

@ Verdict is called a type constructor

@ The parts after the = are called value constructors, as they specify the
different values that this type can have
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Enumerated Types/1

@ In the following module definition, Suit and Rank are type constructors

module Cards where

data Suit = Spades | Clubs | Hearts | Diamonds
data Rank = Ace | Ten | King | Queen | Jack

@ Loading this module and then trying to use one of these values leads to an
error message

> :1 Cards
[1 of 1] Compiling Cards
Ok, modules loaded: Cards.

*Cards> Spades

<interactive>:1:1:
No instance for (Show Suit)
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Enumerated Types/2

@ Haskell tells us that it does not know how to show values of these types
@ In order to show them, we have to make Suit and Rank instances of the
type class Show using the keyword deriving

module Cards where

data Suit = Spades | Clubs | Hearts | Diamonds
deriving (Show)

data Rank = Ace | Ten | King | Queen | Jack
deriving (Show)

@ Now we can load the module again and show the values

> Clubs
Clubs

> Ten
Ten
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Composite Types/1

@ When building more complex composite types, we can use alias types,
which start with the keyword type

data Suit = Spades | Clubs | Hearts | Diamonds
deriving (Show)

data Rank = Ace | Ten | King | Queen | Jack
deriving (Show)

type Card = (Rank,Suit)

type Hand = [Card]

> let card = (Ten,Hearts)
> card
(Ten,Hearts)

@ Card is now essentially a synonym (alias type) for (Rank,Suit), and Hand
for [Card]

@ Type synonyms are mostly just a convenience
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Composite Types/2

@ An alternative way is to use a new type constructor (keyword data)

data Suit = Spades | Clubs | Hearts | Diamonds
deriving (Show)

data Rank = Ace | Ten | King | Queen | Jack
deriving (Show)

data Card = Crd(Rank,Suit) deriving (Show)

data Hand = Hnd[Card] deriving (Show)

> let card = Crd(Ten,Hearts)
> card
Crd (Ten,Hearts)

> let hand = Hnd[Crd(Ten,Hearts), Crd(King,Diamonds)]
> hand
Hnd [Crd (Ten,Hearts), Crd (King,Diamonds)]
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Composite Types/3

@ If we want to know the value of a card, we could write a function taking a
Rank and returning an Int

value :: Rank -> Int
value Ace = 11

value Ten = 10

value King = 4

value Queen = 3

value Jack = 2

@ Applying this function:

> let card = (Ace,Spades)
> let (r,s) = card

> value r

11

PP 2016/17 Unit 12 — Functions and Data Types in Haskell 24/45



Value Constructurs and Optional Parameters

@ Value constructors can optionally be followed by some types (parameters)
that define the values it will contain

@ Lets define a type to store shapes, such as circles or rectangles

data Shape = Circle Float Float Float |
Rectangle Float Float Float Float deriving(Show)

> let ¢ = Cirlce 10 10 5
> c
Circle 10.0 10.0 5.0

® Circle and Rectangle are value constructors followed by type parameters

@ Circle: the first two values are the center and the third value is the radius
9 Rectangle: upper-left corner and lower-right corner
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Value Constructurs are Functions

@ Value constructors are actually functions like (almost) everything else in
Haskell; they ultimately return a value of a data type

@ Let's take a look at the type signatures for the two value constructors of
the Shape data type
> :t Circle
Circle :: Float -> Float -> Float -> Shape

> :t Rectanlge
Rectangle :: Float -> Float -> Float -> Float -> Shape

@ Both value constructures take Float parameters in input and return a
Shape
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Using User-Defined Data Types

@ Lets write a function to compute the surface of the shapes

module Surface (surface) where

surface :: Shape -> Float
surface (Circle _ _r) =pi *xr ~ 2
surface (Rectangle x1 yl x2 y2) = (abs (x2 - x1)) * (abs (y2 - y1))

> surface (Circle 10 10 5)
78.53982

> surface (Rectangle 0 0 10 10)
78.53982

@ The underscore (_) means that this parameter is not used (as in Prolog)

@ Notice that the value constructors Circle and Rectangle are used in pattern
matching
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Polymorphism in Functions

@ A function that reverses a list of cards could look like this

backwards :: Hand -> Hand
backwards [] = []
backwards (h:t) = backwards t ++ [h]

@ However, that would restrict the function to lists of items of type Hand

@ If we want it to work with general lists, we can introduce any type by using
type variables

backwards :: [a] -> [a]
backwards [] = []
backwards (h:t) = backwards t ++ [h]

@ This is known as polymorphism, as a can be any type

@ backwards takes now a list of elements of type a and produces a list of
elements of the same type a

@ backwards is polymorphic
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Polymorphism in User-Defined Types/1

@ User-defined types can also be made polymorphic by using so-called type
variables

@ For example, you need a type that stores a list of pairs of any type

data ListOfPairs a = LoP [(a,a)] deriving (Show)

> let listl = LoP[(1,2),(2,3),(3,4)]

> listl

LoP [(1,2),(2,3),(3,4)]

> let list2 = LoP[(’a’,’b’),(’b’,’c’),(’c?,’d’)]
> 1list2

LoP [(’a’,’b’),(°b’,%c?),(’c’,’d’)]

@ Notice the parameter a in the type definition

@ If the pairs have different types, we get an error
e.g., let 1list3 = LoP[(1,’a’),(2,’b?),(3,°c’)] yields an error
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Polymorphism in User-Defined Types/2

@ If you need the pairs to store different kinds of types, you have to use
different type variables

data AdvListOfPairs a b = ALoP [(a,b)] deriving (Show)

> let listl = ALoP[(1,’a’),(2,’b?)]

> list2

ALoP [(1,’a’),(2,’b")]

> let list2 = ALoP[(1,2),(2,3),(3,4)]
> list3

ALoP [(1,2),(2,3),(3,4)]
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Recursive Types/1

@ You can have recursive types in Haskell
@ Let's look at an example: defining a polymorphic tree structure

data Tree a = Nil | Node a (Tree a) (Tree a)
deriving (Show)

let treel = Nil

> treel

Nil

> let tree2 = Node ’a’ (Node ’b’ Nil Nil)
(Node ’c’ Nil Nil)

> tree2
Node ’a’ (Node ’b’ Nil Nil) (Node ’c’ Nil Nil)
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Recursive Types/2

@ Pattern matching can be used to access individual nodes and sub-trees

data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show)

> let tree = Node ’a’ (Node ’b’ Nil Nil) (Node ’c’ Nil Nil)
> let (Node val childl child2) = tree

> val

Ia)

> childil

(Node ’b’ Nil Nil)

> let (Node v cl c2) = childl

> v
)b)
> cl
Nil
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Depth of a Tree

®

Operating on recursive types often needs recursive functions as well

@ If we want to determine the depth of a tree, we could do it like this:

depth :: Tree a -> Int
depth Nil = 0
depth (Node a left right) = 1 + max (depth left) (depth right)

@ The first case is straightforward: an empty tree has depth 0

@ The second case traverses the tree recursively and adds one to the depth of
the deeper subtree

@ A tail-recursive version of the depth function

depthTR :: Tree a -> Int -> Int
depthTR Nil n = n
depthTR (Node a 1 r) n = max (depthTR 1 n+1) (depthTR r n+1)
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Traversal of a Tree

@ Preorder traversal

preorder :: Tree a -> [a]
preorder Nil = []
preorder (Node a 1 r) = a : (preorder 1) ++ (preorder r)

@ Postorder traversal

postorder :: Tree a -> [a]
postorder Nil = []
postorder (Node a 1 r) = a : (postorder 1) ++ (postorder r)

@ Inorder traversal

inorder :: Tree a -> [a]
inorder Nil = []
inorder (Node a 1 r) = (inorder 1) ++ [a] ++ (inorder r)
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Type Classes Revisited

@ Recall that type classes define which operations can work on which inputs
(similar to interfaces in other programming languages)

9 That is, a type class provides function signatures
o A type is an instance of a (type) class if it supports all functions of that class

@ We are now going to have another look at type classes
@ So far we've automatically made some of our types instances of existing
type classes with the keyword deriving
9 e.g., data ListOfPairs a = LoP [(a,a)] deriving (Show)
@ We will now

9 make a type instance of a type class explicitly, which includes also the
definition of some functions (Haskell may not always be able to derive them
automatically as in the case of the type class Show)

9 create our own type classes
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Creating an Instance of a Type Class/1

o Let's build a simple enumerated type called TrafficLight

data TrafficLight = Red | Yellow | Green

@ We want this type to be comparable, i.e., be an instance of type class Eq,
which is defined as follows:

class Eq a where

(==
/=)

X ==

x /=

y
y

@ The keyword

operations, which must be supported by any type that is an instance of

that class

@ The last two lines mean that Haskell can figure out the definition of the

a -> a -> Bool
a -> a -> Bool
= not (x /= y)
= not ( == y)

class introduces a new type class and the overloaded

other function, i.e., only one of the two need actually to be implemented
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Creating an Instance of a Type Class/2

© In order to make TrafficLight an instance of Eq, we have to

9 declare TrafficLight an instance of Eq using the keyword instance
@ declare one of the two functions (==) or (/=)

data TrafficLight = Red | Yellow | Green

instance Eq TrafficLight where
Red == Red = True

Green == Green = True
Yellow == Yellow = True
_ == _ = False

@ Now variables of type TrafficLight can be compared

> Red == Red
True
> Red == Green

False
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User-Defined Type Classes/1

@ Let’s build our own user-defined type classes
@ In other languages, you can use lots of different values for conditionals

o For example, in JavaScript, 0 and """ evaluate to false, any other integer and
non-empty string to true

@ To introduce this behavior into Haskell, we write a YesNo type class that
takes a value and returns a Boolean value

@ The keyword class begins the definition of a new type class

class YesNo a where
yesno :: a —> Bool
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User-Defined Type Classes/2

@ Next, we'll make Int/Integer an instance of our new type class

@ This allows us to evaluate integer numbers to a boolean value

instance YesNo Int where
yesno 0 = False
yesno _ = True

instance YesNo Integer where
yesno 0 = False
yesno _ = True

> yesno 4
True

> yesno 0
False
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Functor Type Class/1

@ The Functor type class is a built-in type class, which is basically for things
that can be mapped, i.e., the map operator can be applied

@ e.g., lists are an instance of this type class

@ How is this class defined?

class Functor f where
fmap :: (a->b) >fa->fb

@ This definition essentially says: give me a function a -> b and a box with
a'sin it and I'll give you a box with b’s in it

@ f is a type constructor, i.e., a constructor that takes a type
parameter/variable to create a new type

@ For example, a list is a type that takes a type parameter

@ A concrete value always has to be a list of some type, e.g., a list of strings,
it cannot be just a generic list
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Functor Type Class/2

@ So a functor takes

@ a function from a type a to a type b
@ and a type constructor with type parameter a

and returns
@ a type constructor with type parameter b
@ For example, for a list of type a and a function a -> b

@ you get as return value a list of type b
@ And that's exactly what a map operator does on a list
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A List is an Instance of the Functor Type Class

©

A list ([...]) is an instance of the type class Functor

instance Functor [] where
fmap = map
@ [] is a type constructor (actually the list constructor)

@ Compare the signature of fmap and map

> :t fmap

fmap :: Functor £ => (a ->b) ->f a->fb
> :t map

map :: (a -> b) -> [a] -> [b]

@ Notice that the type constructor f is replaced by the list constructor []

@ Using the map function

>map (\x -> x * x) [1,2,3]
[1,4,9]
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A Tree as an Instance of the Functor Type Class/1

@ Now we make Tree an instance of class Functor

instance Functor Tree where
fmap f Nil = Nil
fmap f (Node x left right) =
Node (f x) (fmap f left) (fmap f right)

@ Doing a map on an empty tree is straightforward: it returns an empty tree

@ For any other tree, we have to recursively go down the left and right
subtrees
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Type Classes Revisited

A Tree as an Instance of the Functor Type Class/2

@ Now we can run a map (more specifically an fmap) on our tree

> let treel = Node 1 (Node 2 Nil Nil) (Node 3 Nil Nil)
> fmap (+2) treel

Node 3 (Node 4 Nil Nil) (Node 5 Nil Nil)

> fmap (show) treel

Node "1" (Node "2" Nil Nil) (Node "3" Nil Nil)
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