Programming Paradigms
Unit 11 — Functional Programming with Haskell
J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

PP 2016/17 Unit 11 — Functional Programming with Haskell 1/37

I
QOutline

© Basic Concepts

© Lists and Tuples

e Basics of Haskell’'s Type System

O Modules

PP 2016/17 Unit 11 — Functional Programming with Haskell 2/37

QOutline

© Basic Concepts

PP 2016/17 Unit 11 — Functional Programming with Haskell 3/37

Background

@ Now we'll study a purely functional programming language: Haskell
9 Was developed in 1990 by a committee of experts combining the best
features of existing functional programming languages
@ Named after the American mathematician and logician Haskell Curry
@ Haskell is a statically and strongly typed, compiled, pure functional
programming language
@ Not very surprisingly, the centerpiece of Haskell are functions that have
input parameters and compute a result

PP 2016/17 Unit 11 — Functional Programming with Haskell 4/37

Referential Transparency

@ Referential transparency is a useful property of pure functional languages:

@ functions return the same output, given the same input

@ functions do not have side effects, i.e., they do not modify program state

@ a variable can only be assigned (matched) a value once within a scope or
program execution

@ Haskell supports referential transparency

PP 2016/17 Unit 11 — Functional Programming with Haskell 5/37

Advantages of Referential Transparency

@ Allows a compiler to figure out a program’s behavior more easily
@ Allows a programmer to show correctness of the code more easily

@ Helps in building correct programs by putting together smaller, correct
functions, that always behave in the same way

@ Allows Haskell to do lazy evaluation: it will not compute anything until the
result is actually needed

@ For example, an infinite data structure is not a problem (as long as you
don't try to access all of it!)

PP 2016/17 Unit 11 — Functional Programming with Haskell 6/37

What Do the “Experts” Say?/1

@ Functional programming is considered an elegant style of programming

LI5P 15 OVER HALFA | | T WONDER IF THECYCLES THESE ARE YOUR
CENTURY QLD AND IT WILL CONTINUE FOREVER FATHER'S PARENTHESES
STILL HAS THIS PERFECT \L—‘_'——l/_/

TIMELESS AIR ABOUT IT.

&.____w_f/
A FEW CODERS FROMEACH
NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

ELEGANT
WEAPONS

FOR A MORE ... CVILIZED AGE-

PP 2016/17 Unit 11 — Functional Programming with Haskell 7/37

What Do the “Experts” Say?/2

@ It is considered to be a bit academic, though

LAST NIGHT I DRFTED OFF || Jif AT ONCE, JUST LIKE THEY SAID, T FELT A

STRUCTURE OF LISP CopEs UNFOLD BEFORE ME

== wen T =T

Y S
fﬂm X
OFiar's ~—
2

= —
THE PATTERNS AND METAPRITERNS DANCED.
SNTAY FADED, AND T SNAM IN THE PURITY OF
QUANTIFIED (ONCEPTICN. OF [DEAS MANIFEST

SUDDENLY, I WAS BATHED
N A SUFFUSION OF BLUE.

PP 2016/17 Unit 11 — Functional Programming with Haskell

T MEAN, OSTENSIBLY, YES.
HONESTLY, WE HACKED MasT
OF IT TOGETHER WiTH PERL.

8/37

Basic Concepts

Functional Programming in Practice

@ The functional style of programming is applied in practice
@ There are users in the financial industry
@ Mainly for building complex models
@ More details are provided here:
http://www.haskell.org/haskellwiki/Haskell_in_industry
@ Unreal Engine 4 is a software framework (game engine) designed for the
creation and development of video games

@ Has taken functional programming concepts on board, e.g. see here:
http://graphics.cs.williams.edu/archive/SweeneyHPG2009/TimHPG2009.pdf
o Purists would disagree, as the engine is written in C++4-, but functional

concepts are applied

PP 2016/17 Unit 11 — Functional Programming with Haskell 9/37

http://www.haskell.org/haskellwiki/Haskell_in_industry
http://graphics.cs.williams.edu/archive/SweeneyHPG2009/TimHPG2009.pdf

Starting the Interpreter

@ Although Haskell is usually compiled, there is also an interactive interpreter
@ To start the interpreter in Linux, open a console and type ghci

@ The GHC interpreter prompt > shows up, which means that the interpreter
is ready to evaluate an expression

@ Here are a few arithmetic expressions
> 2+43%4
14

> (2+3)*4
20

> sqrt (372 + 472)
5.0

PP 2016/17 Unit 11 — Functional Programming with Haskell 10/37

Hello World

@ Let's write a "Hello, world!" program in Haskell

Prelude> "Hello, World!"
"Hello, World!"

@ The Haskell system evaluated the string, and printed the result, which is
the string itself.

@ We can try a variation to print directly to standard output

Prelude> putStrLn "Hello World"
Hello World

@ Later we will see how to make an exectuable "Hello World" program

PP 2016/17 Unit 11 — Functional Programming with Haskell 11/37

Haskell is Strongly Typed

@ Haskell is a strongly typed language, it doesn't like you to mix types

>5+ 3
8

> 5 + "string"
<interactive>:8:3:
some lengthy error message

@ However, in some situations types can be inferred

>2 + 3.5
5.5

PP 2016/17 Unit 11 — Functional Programming with Haskell 12/37

Variables

@ Variables in Haskell begin with a lower-case letter

>a=25
<interactive>:1:3: parse error on input ’=’

@ To assign a value to a variable in the shell, you have to use the function let

> let a =5
> a
5

@ let binds the value 5 to the variable a in the local scope (i.e., the console)

PP 2016/17 Unit 11 — Functional Programming with Haskell 13/37

Using Functions

® min and max are two built-in functions with the obvious meaning

@ When calling functions, parameters are not enclosed in parentheses, you
just list them

> min 8 12
8

@ Functions can be nested inside each other

@ Parentheses are used to indicate precedence

> max (min 8 12) (min 3 7)
8

PP 2016/17 Unit 11 — Functional Programming with Haskell 14/37

Writing Your Own Functions/1

@ When defining a function of your own in the console, you have to use the

function let similar as we did for variable assignments

@ The, you have to provide the following parts:

9

9
o
9

The name of the function

A list of parameters
The symbol =

The actual definition (body) of the function

> let doubleMe x =
> doubleMe 8

16

@ The = separates the head of the function from the body of the function,
which specifies the actual definition of the function

X + X

@ The head is also called signature

PP 2016/17

Unit 11 — Functional Programming with Haskell

15/37

Writing Your Own Functions/2

@ If you want to double two numbers and add them, you could start from
scratch

let doubleUs x y = x * 2 +y *x 2

@ However, it is good (functional) programming style to re-use correct code

let doubleUs x y = (doubleMe x) + (doubleMe y)

PP 2016/17 Unit 11 — Functional Programming with Haskell 16/37

Conditionals

@ Conditionals are functions in Haskell, so they always have to return
something:

> let doubleSmallNumber x = if x > 100 then x else x*2

@ Writing statements spanning more than one line in the shell can be a bit of
a pain

> {

| let { doubleSmallNumber x = if x > 100
| ;then x

| ;else x*2}

|

)

PP 2016/17 Unit 11 — Functional Programming with Haskell 17/37

QOutline

© Lists and Tuples

PP 2016/17 Unit 11 — Functional Programming with Haskell 18/37

Lists/1

@ Haskell also supports lists with the standard square bracket notation
> let numberlist = [1,2,3]
@ All elements of a list have to be of the same type
@ The head and the tail of a list can be obtained by the operator :
@ [] represents the empty list
> let a:b = numberlist
> a
1

> b
[2,3]

@ Internally, a list [1] is represented as 1: []
@ Notice the similarity to Prolog lists that are represented as structures

PP 2016/17 Unit 11 — Functional Programming with Haskell 19/37

Lists/2

@ You can also extract more than one elements from a list:

let a:b:c = numberlist
a

>
>
1
> Db
2
> c

(3]

@ The : operator can also be used to construct new lists

> 10:[11,12]
[10,11,12]

@ Another way is to concatenate two lists with the operator ++

> [1] ++ [2,3]
[1,2,3]

PP 2016/17 Unit 11 — Functional Programming with Haskell 20/37

Lists/3

@ Alternatively, you can call the functions head and tail

> head numberlist
1

> tail numberlist
[2,3’4’5]
@ There are also functions to take and drop the first n elements of a list

> take 2 numberlist
[1,2]

> drop 2 numberlist

(3]

@ There is a large number of other built-in list functions

PP 2016/17 Unit 11 — Functional Programming with Haskell 21/37

Lists/4

@ You can also create an infinite list!

> let naturalNumbers = [1..]
> take 5 naturalNumbers
(1,2,3,4,5]

@ This works since Haskell is lazy, i.e., Haskell won't execute functions and

calculate things until it’s really forced to show you a result, e.g., the first
five numbers.

PP 2016/17 Unit 11 — Functional Programming with Haskell 22/37

Lists and Tuples

Ranges

@ Similar to Ruby, you can create lists of numbers in a certain range

> [1..10]
[1,2,3,4,5,6,7,8,9,10]

@ You can also skip some numbers or count backwards:

> [2,4..20]
[2,4,6,8,10,12,14,16,18,20]
> [10,7..1]
[10,7,4,1]

PP 2016/17 Unit 11 — Functional Programming with Haskell 23/37

List Comprehensions/1

@ Set comprehension is a mathematical way of defining specific sets, given a
more general set

@ For example, the first ten even natural numbers can be defined by
Sevenlo = {2X‘X S N,X < 10}

@ Set comprehensions are usually described by
@ an output function (here 2x)
@ a variable (here x)
@ an input set (here N)
9 a predicate (here x < 10)

PP 2016/17 Unit 11 — Functional Programming with Haskell 24/37

List Comprehensions/2

(4

In Haskell this concept can be applied to lists, called list comprehension

(2

Allows you to generate lists that are too complex for ranges

©

For example, out of the first five odd natural numbers, we want those
whose square is not equal to 25

[x| x <= [1,3..9], (x*x) /= 25]

®

<~ stands for € (or is interpreted as “drawn from")

(4

The above list comprehension will output

[1,3,7,9]

PP 2016/17 Unit 11 — Functional Programming with Haskell 25/37

Tuples

@ Haskell also knows tuples, which are enclosed in round brackets:
(1 ,"one", "uno")
@ Unlike lists, tuples can combine different data types in the same tuple

@ Similar to Prolog structures, except that there is no functor

@ Tuples can also be nested

(1’ (llonell’ IIENII) , (llunoll’ "ITII))

PP 2016/17 Unit 11 — Functional Programming with Haskell 26/37

Combining Tuples and Lists

@ Consider a triangle in the Euclidean space, which is represented by 3
points; each point is represented by a tuple

@ The following list comprehension flips the triangle along the diagonal

> [(y,X) I (X,Y) <- [(1’2), (2:3), (3’4)]]
[(2,1): (3’2), (4)3)]

@ This list comprehension has no condition, which means that it is always true

@ Shift the triangle horizontally

> [(4_X,y) | (X,Y) <- [(1:2), (2,3): (3:4)]]
[¢@3,2), (2,3, 1,D]

PP 2016/17 Unit 11 — Functional Programming with Haskell 27/37

)
QOutline

e Basics of Haskell’'s Type System

PP 2016/17 Unit 11 — Functional Programming with Haskell 28/37

Haskell’s Type System/1

@ After mentioning types a few times now, it's time to have a closer look

@ The :t command gives you the type of an expression

>t ’a’
’a’ :: Char

> :t True

True :: Bool

> :t "hello!"

"hello!" :: [Char]

> :t (True,’a’)

(True,’a’) :: (Bool, Char)
> :t 4==5

==5 :: Bool

@ All the major built-in types of other languages are also available in Haskell

@ Types start with an upper-case letter

PP 2016/17 Unit 11 — Functional Programming with Haskell

29/37

Haskell’'s Type System/2

@ You can also find out the type of functions

> :t doubleMe
doubleMe :: Integer -> Integer

> :t doubleUs
doubleUs :: Integer -> Integer -> Integer

@ The last type is the return type
@ The others are the type of the input parameters

9 e.g., doubleUs has two input parameters of type Integer and returns a
value of type Integer

PP 2016/17 Unit 11 — Functional Programming with Haskell 30/37

Type Variables

(4

Let's look at more subtle typing issues

(3

For example, what is the type of the function head?

@ The function head can be applied to lists of different types
> :t head
head :: [a]l -> a

(4

a is a type variable, i.e., a can be of any type

@ So, the head function accepts a list of any type a and returns a single
element of the same type a

PP 2016/17 Unit 11 — Functional Programming with Haskell 31/37

Type Classes/1

@ In Haskell, types are organized in type classes

@ Let's look at the type of the comparison operator?

> :t (::
(==) :: Eqa=>a->a ->Bool

@ The symbol => is called a type constraint

@ The left-hand side represents that type variable a has to be a member of

type class Eq
@ The right-hand side is the type specification of the function ==

9 two arguments of a type that is a member of the type class Eq and
9@ a boolean return type

@ Haskell supports a couple of type classes, e.g.,

@ 0rd for types that have ordering
@ Num for types that have numerical values

PP 2016/17 Unit 11 — Functional Programming with Haskell 32/37

Type Classes/2

@ Type classes are similar to interfaces
@ They tell you what kind of functions a type supports

@ For example,

9 types belonging to the type class Num support all the standard mathematical
operators: +, -, *, /, ...

@ Show converts values to strings

@ Read is the opposite: takes a string and converts it to a value

PP 2016/17 Unit 11 — Functional Programming with Haskell 33/37

. Modules |
QOutline

O Modules

PP 2016/17 Unit 11 — Functional Programming with Haskell 34/37

_ Vodies
Writing Modules

@ Let's start with some proper programming and define code in a module

@ The code below shows a complete module MyModule, which we store in a
file MyModule.hs

module MyModule (
doubleMe
) where

doubleMe :: Integer -> Integer
doubleMe x = x + x

@ Module names start with an upper-case letter and lists the functions that
are exported
@ The last two lines are the function definition:

@ the first line specifies the type of the function doubleMe,
9 the second line defines the function itself

@ Note that the function let is not required inside modules

PP 2016/17 Unit 11 — Functional Programming with Haskell 35/37

- Vodues
Compiling and Using Modules

® You can load the file MyModule.hs into the interpreter with the :I function

> :1 MyModule
[1 of 1] Compiling MyModule

(MyModule.hs, interpreted)
Ok, modules loaded: MyModule.
*MyModule>

@ Now you can use the functions defined in the module

> doubleMe 2
4

@ Alternatively, you can also compile the module using the OS command ghc
and then load the compiled version with :1 as above

PP 2016/17 Unit 11 — Functional Programming with Haskell 36/37

_ Vodies
Importing other Modules

@ If you want to re-use code from a module in another module, you can
import it

module YAM (
doubleUs
) where

import MyModule

doubleUs :: Integer -> Integer -> Integer
doubleUs x y = (doubleMe x) + (doubleMe y)

PP 2016/17 Unit 11 — Functional Programming with Haskell 37/37

	Basic Concepts
	Lists and Tuples
	Basics of Haskell's Type System
	Modules

