Programming Paradigms
Unit 10 — Advanced Concepts
J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

PP 2016/17 Unit 10 — Advanced Concepts 1/27

I
QOutline

© Interactive Programs

© Sorting

© Mapping

@ Foundation, Strengths and Weaknesses

PP 2016/17 Unit 10 — Advanced Concepts 2/27

)
QOutline

© Interactive Programs

PP 2016/17 Unit 10 — Advanced Concepts 3/27

Interactive Programs/1

@ Interactive loops are implemented by while loops in conventional languages
@ The following Prolog program reads and echos from the input until one of
the words 'quit’ or 'exit’ is input
echo :- read(X), echo(X).
echo(X) :- last_input(X), !.

echo(X) :-
write(X), nl,
read(Y), !,
echo(Y).

last_input(quit).
last_input(exit).

@ The predicate read (X) reads the next term from the input stream and

matches it with X (must be followed by a ", which is not part of the term)

@ read(X) succeeds only once, i.e., no alternative choice upon backtracking

PP 2016/17 Unit 10 — Advanced Concepts 4/27

Interactive Programs with repeat/1

@ An alternative way to implement a read/echo loop is to use the built-in
predicate repeat/0, which is implemented as follows:

repeat.
repeat :- repeat.
@ If we put repeat in a goal, it always succeeds on backtracking

@ This allows to transform goals/rules that have no choice into goals/rules
that always succeed again on backtracking

@ Examples are read and write, which have no choices

PP 2016/17 Unit 10 — Advanced Concepts 5/27

Interactive Programs with repeat/2

@ With repeat, the read/echo program looks as follows
echo2 :-
repeat,
read(X),
write(X),
nl,
(X = ’quit’ ; X = ’exit’),

@ The operator ; specifies a disjunction of goals

@ X ; Y succeeds if at least one of the two X or Y succeeds
o If X fails, then an attempt is made to satisfy Y
@ If Y fails, the entire disjunction fails

@ Disjunction allows to express alternatives within the same clause
@ Can also be replaced by several facts and rules.

@ It is advisable to put a disjunction into parentheses

PP 2016/17 Unit 10 — Advanced Concepts 6/27

QOutline

© Sorting

PP 2016/17 Unit 10 — Advanced Concepts 7/27

Naive Sorting

@ A naive way to sort a list L follows the generate and test pattern

@ Generate first a permutation S of the elements in L
@ Test if the resulting list S is sorted

sort(L, S) :- permutation(L,S),

sorted(S),
[

sorted([]).

sorted([X]).

sorted([X,Y|T]) (- X <Y,
sorted([YI|T]).

@ This is not a very efficient way of sorting a list
@ ... and we would have to write a different predicate for different sort orders

@ Both issues will be addressed in the following

PP 2016/17 Unit 10 — Advanced Concepts 8/27

Insertion Sort

@ In the insertion sort method, each item of a list is considered one at a time

and inserted into a new list in the appropriate position

@ Predicate insort (L,S) succeeds when
list S is a sorted version of list L

insort([]1, [1).

insort ([X|L], M) :-
insort (L, N),
insortx(X, N, M).

insortx(X, [AIL], [AIM]) :-
A <X,
',

insortx(X, L, M).
insortx(X, L, [XIL]).

PP 2016/17 Unit 10 — Advanced Concepts

9/27

Constructing Structures

@ A more general-purpose insertion sorting predicate is to pass the ordering
predicate as an argument of insort, e.g.,
¢ insort([3,2,1], S, ’<’) or
9 insort([3,2,1], S, aless), where aless is self-defined order predicate
@ In order to call the ordering predicate inside the sorting predicate, we need
first to construct a predicate

@ The predicate =. . (also pronounced "univ") allows to construct a structure
from a list of arguments
® The goal P =.. L means that L is the list consisting of the functor of the
predicate P followed by its arguments
?- P =.. [foo, A, B, C].
P = foo(4,B,C)
yes
?- foo(a,b,c) =.. L.
L = [foo, a, b, cl]
yes

PP 2016/17 Unit 10 — Advanced Concepts 10/27

Generalized Insertion Sort/1

@ Predicate insortg(L,S,0rderPred) succeeds when list S is a sorted
version of list L, using the sort predicate OrderPred

insortg([l, [1,).

insortg([XIL], M, 0) :-
insortg(L, N, 0),
insortgx(X, N, M, 0).

insortgx(X, [AIL], [AIM], 0) :-
P=.. [0, A, X],
call(P),
!

L

insortgx(X, L, M, 0).
insortgx(X, L, [XIL], .0).

@ Predicate call(P) tries to prove P as a goal
@ Returns true if P can be satisfied, false otherwise

PP 2016/17 Unit 10 — Advanced Concepts 11/27

Generalized Insertion Sort/2

® We can use insortg as follows

?7- insortg([4,3,2,1], S, ’<’).
s = [1,2,3,4]

yes

?- insortg([4,3,2,1,5], 8, ’>’).
s = [5,4,3,2,1]

yes

PP 2016/17 Unit 10 — Advanced Concepts 12/27

Alphabetical Sorting/1

@ For alphabetical sorting (or sorting more complex structures), we can write
our own sorting predicates

@ If we want to sort atoms, we need the predicate name (A,L) that relates
atom A to the list L of character (ASCII codes) that make it up

9 i.e., name transforms atom A into a list L of characters or vice versa

7- name(apple, L).
L = [97,112,112,108,101].

?7- name(A, [97,112,112,108,101]).
A = apple

7- name(apple, "apple")
true

?- name(apple, "pear")
false

PP 2016/17 Unit 10 — Advanced Concepts 13/27

Alphabetical Sorting/2

@ The following predicate aless(X,Y) implements alphabetical sorting
@ i.e., succeeds if X is alphabetically smaller than Y

aless(X, Y) :- name(X, XL),
name(Y, YL),
alessx(XL, YL).

alessx([1, [_I_.1).
alessx([X|.], [YI]) :- X <Y.
alessx([XI|T1], [X|T2]) :- alessx(T1, T2).

@ Now we can pass aless to the generalized insertion sort predicate

?7- insortg([c,b,al, S, aless).
S = [a,b,c]
true

?7- insortg([tom,joe,ann], S, aless).
S = [ann, joe,tom]
true

PP 2016/17 Unit 10 — Advanced Concepts 14/27

QOutline

© Mapping

PP 2016/17 Unit 10 — Advanced Concepts 15/27

Mapping Lists/1

@ Mapping one structure component-by-compontent to another structure is

frequently needed, e.g., replace negative numbers in a list by zero

@ The following predicate maplist (P,L,M) applies predicate P to each
element in L to form a new list M

maplist(_, [1, [1) :- !.
maplist(P, [XIL], [YIM]) :-
Q =.. [P,X,Y],
call(Q),
maplist(P,L,M).
@ To compute the absolute value |x| of a list of numbers, we need the
following predicate
absolute(X,Y) (- X <0, Y is X *x -1, !.
absolute (X,X).

@ 7- maplist(absolute, [2,-1,5,-10], L).
L = [2,1,5,10]
true

PP 2016/17 Unit 10 — Advanced Concepts

16/27

Mapping Lists/2

@ The same predicate maplist can be used to implement a simple translation
tool that translates a list of words/sentence into another language

@ For that, we just need a dictionary
dict(the,le).
dict(chases,chasse).

dict(dog,chien).
dict(cat,chat).

@ 7- maplist(dict, [the,dog,chases,the,cat], L).
L = [le,chien,chasse,le,chat]
true

@ Example: Write a predicate maplist/4 that maps X x Y — Z.

PP 2016/17 Unit 10 — Advanced Concepts 17/27

Applying a Predicate

@ A simplification of maplist is applist(P,L), which applies predicate P
that is assumed to have one argument to all elements of list L

applist(., [1) :- !.

applist(P, [XIL]) :-
Q=.. [P,X],
call(Q),
applist(P,L).

@ The following will print each element of a list in a separate line

?7- applist(writeln, [a,b,c]).
a

b

c

true.

PP 2016/17 Unit 10 — Advanced Concepts 18/27

Mapping Structures/1

@ Mapping is not restricted to lists, but can be defined for any kind of
structure

@ Consider arithmetic expression made up of '*' and '+’
9 eg,3+4xa+b
@ Suppose we want to remove multiplications by 1 and additions by 0
@ The algebraic simplifications can be described by a predicate
s(0p, La, Ra, Ans)

@ It represents that an expression consisting of an operator Op with left
argument La and right argument Ra can be simplified to Ans

9 eg.,s(+, X, 0, X) represents that X +0 =X

PP 2016/17 Unit 10 — Advanced Concepts 19/27

Mapping Structures/2

@ The simplification rules are

s(+, X, 0, X).
s(+, 0, X, X).
s(+, X, Y, X+Y). /* catchall for + */
s(x, _, 0, 0).
s(x, 0, _, 0).
s(x, 1, X, X).
s(x, X, 1, X).
s(x, X, Y, XxY). /* catchall for * %/

@ The "catchall” rules (at the end of each operator’s part) are needed for the
case that no simplifiation can be applied

@ This rule will always succeed, which is important when used in a mapping

PP 2016/17 Unit 10 — Advanced Concepts 20/27

Mapping Structures/3

@ With the above rules in place, we can write a simplification predicate that
maps and simplifies arithmetic expressions

simplify(E, E) :- atomic(E), !.
simplify(E, F) :-
E =.. [Op, La, Ral,
simplify(La, X),
simplify(Ra, Y),
s0p, X, Y,), !.

@ To simplify an expression E, we need first to simplify the left-hand
argument of E, then the right-hand argument of E, then see if the
simplified result can further be simplified

@ atomic(E) succeeds if E is either an atom or an integer
@ Simplifying expressions
?7- simplify(ax10+(b+0+c)*1, S).
S=ax*x 10+ (b + c)
true

PP 2016/17 Unit 10 — Advanced Concepts 21/27

)
QOutline

e Foundation, Strengths and Weaknesses

PP 2016/17 Unit 10 — Advanced Concepts 22/27

Mathematical Foundation

@ Just a brief explanation how Prolog fits into the framework of
mathematical logic
@ First-order logic is a powerful mathematical tool for formalizing descriptions
9 It is also sometimes called predicate logic
9 Unfortunately, first-order logic is not decidable
@ Prolog is based on a decidable subset of first-order logic called Horn clauses
o It is still Turing-complete, though

PP 2016/17 Unit 10 — Advanced Concepts 23/27

Strengths of Prolog

@ Prolog is very well suited for application centered around Artificial
Intelligence (Al)

@ Natural-language processing
@ Al behavior in games
o Constraint satisfaction problems, such as time tabling and scheduling

@ Prolog (or its descendants) is used in the context of the Semantic Web

9 A variant called Datalog is used in databases

@ Also used for simulation and prediction software

PP 2016/17 Unit 10 — Advanced Concepts 24/27

Weaknesses of Prolog

@ Prolog has a steeper learning curve compared to other languages

@ Fairly focused niche applications, not really a general-purpose language
@ There are scalability issues, the basic matching strategy used by Prolog is
computationally expensive
@ Has problems to process large data sets
@ It is not as declarative as it seems at first glance

9 If you want to write efficient Prolog programs, you have to know what is
going on behind the scenes

PP 2016/17 Unit 10 — Advanced Concepts 25/27

-
Summary

(2

Prolog is a declarative programming language based on First-order logic
9 Specifies what to compute and not how to do it

(2

A Prolog program/knowledge base consists of facts and rules

®

Evaluating a Prolog program means to prove a goal
@ Thereby, key concepts are instantiation, matching, and backtracking

(4

Prolog uses recursion instead of loops

(2

Lists and structures are two very important data structures

®

The cut operator allows to stop backtracking

@ Should be used with care
@ A better programming style is to replace it by negation

(4

“Generate and test” is a very common programming pattern

PP 2016/17 Unit 10 — Advanced Concepts 26/27

-
Summary

@ The box model shows the execution of a Prolog program
@ Has four ports: CALL, EXIT, REDO, FAIL
Debugger shows the program execution according to the box model

(2

9 trace provides an exhausitive tracing mode
@ debug allows to jump to spy points set by the spy predicate

@ Accumulators are frequently needed to collect intermediate results when
traversing structures or lists

9 Helpful to make programs tail-recursive

(2

Sorting is an important operation

o Generalized insertion sort, which allows to pass a sorting predicate
o Constructing structures with the =.. (univ) operator needed

(2

Another frequent and powerful operation is mapping structures and lists
@ General map-functions can be used

@ read and write predicates for simple interactive programs

PP 2016/17 Unit 10 — Advanced Concepts 27/27

	Interactive Programs
	Sorting
	Mapping
	Foundation, Strengths and Weaknesses

