
Programming Paradigms
Unit 10 — Advanced Concepts

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2016/17 Unit 10 – Advanced Concepts 1/27

Outline

1 Interactive Programs

2 Sorting

3 Mapping

4 Foundation, Strengths and Weaknesses

PP 2016/17 Unit 10 – Advanced Concepts 2/27

Interactive Programs

Outline

1 Interactive Programs

2 Sorting

3 Mapping

4 Foundation, Strengths and Weaknesses

PP 2016/17 Unit 10 – Advanced Concepts 3/27

Interactive Programs

Interactive Programs/1

Interactive loops are implemented by while loops in conventional languages

The following Prolog program reads and echos from the input until one of
the words ’quit’ or ’exit’ is input

echo :- read(X), echo(X).

echo(X) :- last input(X), !.

echo(X) :-

write(X), nl,

read(Y), !,

echo(Y).

last input(quit).

last input(exit).

The predicate read(X) reads the next term from the input stream and
matches it with X (must be followed by a ’.’, which is not part of the term)

read(X) succeeds only once, i.e., no alternative choice upon backtracking

PP 2016/17 Unit 10 – Advanced Concepts 4/27

Interactive Programs

Interactive Programs with repeat/1

An alternative way to implement a read/echo loop is to use the built-in
predicate repeat/0, which is implemented as follows:

repeat.

repeat :- repeat.

If we put repeat in a goal, it always succeeds on backtracking

This allows to transform goals/rules that have no choice into goals/rules
that always succeed again on backtracking

Examples are read and write, which have no choices

PP 2016/17 Unit 10 – Advanced Concepts 5/27

Interactive Programs

Interactive Programs with repeat/2

With repeat, the read/echo program looks as follows

echo2 :-

repeat,

read(X),

write(X),

nl,

(X = ’quit’ ; X = ’exit’),

!.

The operator ; specifies a disjunction of goals

X ; Y succeeds if at least one of the two X or Y succeeds
If X fails, then an attempt is made to satisfy Y

If Y fails, the entire disjunction fails

Disjunction allows to express alternatives within the same clause

Can also be replaced by several facts and rules.

It is advisable to put a disjunction into parentheses

PP 2016/17 Unit 10 – Advanced Concepts 6/27

Sorting

Outline

1 Interactive Programs

2 Sorting

3 Mapping

4 Foundation, Strengths and Weaknesses

PP 2016/17 Unit 10 – Advanced Concepts 7/27

Sorting

Näıve Sorting

A näıve way to sort a list L follows the generate and test pattern

Generate first a permutation S of the elements in L

Test if the resulting list S is sorted

sort(L, S) :- permutation(L,S),

sorted(S),

!.

sorted([]).

sorted([X]).

sorted([X,Y|T]) :- X < Y,

sorted([Y|T]).

This is not a very efficient way of sorting a list

... and we would have to write a different predicate for different sort orders

Both issues will be addressed in the following

PP 2016/17 Unit 10 – Advanced Concepts 8/27

Sorting

Insertion Sort

In the insertion sort method, each item of a list is considered one at a time
and inserted into a new list in the appropriate position

Predicate insort(L,S) succeeds when
list S is a sorted version of list L

insort([], []).

insort([X|L], M) :-

insort(L, N),

insortx(X, N, M).

insortx(X, [A|L], [A|M]) :-

A < X,

!,

insortx(X, L, M).

insortx(X, L, [X|L]).

PP 2016/17 Unit 10 – Advanced Concepts 9/27

Sorting

Constructing Structures

A more general-purpose insertion sorting predicate is to pass the ordering
predicate as an argument of insort, e.g.,

insort([3,2,1], S, ’<’) or
insort([3,2,1], S, aless), where aless is self-defined order predicate

In order to call the ordering predicate inside the sorting predicate, we need
first to construct a predicate

The predicate =.. (also pronounced ”univ”) allows to construct a structure
from a list of arguments

The goal P =.. L means that L is the list consisting of the functor of the
predicate P followed by its arguments

?- P =.. [foo, A, B, C].

P = foo(A,B,C)

yes

?- foo(a,b,c) =.. L.

L = [foo, a, b, c]

yes

PP 2016/17 Unit 10 – Advanced Concepts 10/27

Sorting

Generalized Insertion Sort/1

Predicate insortg(L,S,OrderPred) succeeds when list S is a sorted
version of list L, using the sort predicate OrderPred

insortg([], [],).

insortg([X|L], M, O) :-

insortg(L, N, O),

insortgx(X, N, M, O).

insortgx(X, [A|L], [A|M], O) :-

P =.. [O, A, X],

call(P),

!,

insortgx(X, L, M, O).

insortgx(X, L, [X|L], O).

Predicate call(P) tries to prove P as a goal

Returns true if P can be satisfied, false otherwise

PP 2016/17 Unit 10 – Advanced Concepts 11/27

Sorting

Generalized Insertion Sort/2

We can use insortg as follows

?- insortg([4,3,2,1], S, ’<’).

S = [1,2,3,4]

yes

?- insortg([4,3,2,1,5], S, ’>’).

S = [5,4,3,2,1]

yes

PP 2016/17 Unit 10 – Advanced Concepts 12/27

Sorting

Alphabetical Sorting/1

For alphabetical sorting (or sorting more complex structures), we can write
our own sorting predicates

If we want to sort atoms, we need the predicate name(A,L) that relates
atom A to the list L of character (ASCII codes) that make it up

i.e., name transforms atom A into a list L of characters or vice versa

?- name(apple, L).

L = [97,112,112,108,101].

?- name(A, [97,112,112,108,101]).

A = apple

?- name(apple, "apple")

true

?- name(apple, "pear")

false

PP 2016/17 Unit 10 – Advanced Concepts 13/27

Sorting

Alphabetical Sorting/2

The following predicate aless(X,Y) implements alphabetical sorting
i.e., succeeds if X is alphabetically smaller than Y

aless(X, Y) :- name(X, XL),

name(Y, YL),

alessx(XL, YL).

alessx([], [|]).

alessx([X|], [Y|]) :- X < Y.

alessx([X|T1], [X|T2]) :- alessx(T1, T2).

Now we can pass aless to the generalized insertion sort predicate

?- insortg([c,b,a], S, aless).

S = [a,b,c]

true

?- insortg([tom,joe,ann], S, aless).

S = [ann,joe,tom]

true

PP 2016/17 Unit 10 – Advanced Concepts 14/27

Mapping

Outline

1 Interactive Programs

2 Sorting

3 Mapping

4 Foundation, Strengths and Weaknesses

PP 2016/17 Unit 10 – Advanced Concepts 15/27

Mapping

Mapping Lists/1

Mapping one structure component-by-compontent to another structure is
frequently needed, e.g., replace negative numbers in a list by zero

The following predicate maplist(P,L,M) applies predicate P to each
element in L to form a new list M

maplist(, [], []) :- !.

maplist(P, [X|L], [Y|M]) :-

Q =.. [P,X,Y],

call(Q),

maplist(P,L,M).

To compute the absolute value |x | of a list of numbers, we need the
following predicate

absolute(X,Y) :- X < 0, Y is X * -1, !.

absolute(X,X).

?- maplist(absolute, [2,-1,5,-10], L).

L = [2,1,5,10]

true

PP 2016/17 Unit 10 – Advanced Concepts 16/27

Mapping

Mapping Lists/2

The same predicate maplist can be used to implement a simple translation
tool that translates a list of words/sentence into another language

For that, we just need a dictionary

dict(the,le).

dict(chases,chasse).

dict(dog,chien).

dict(cat,chat).

?- maplist(dict, [the,dog,chases,the,cat], L).

L = [le,chien,chasse,le,chat]

true

Example: Write a predicate maplist/4 that maps X × Y → Z .

PP 2016/17 Unit 10 – Advanced Concepts 17/27

Mapping

Applying a Predicate

A simplification of maplist is applist(P,L), which applies predicate P
that is assumed to have one argument to all elements of list L

applist(, []) :- !.

applist(P, [X|L]) :-

Q =.. [P,X],

call(Q),

applist(P,L).

The following will print each element of a list in a separate line

?- applist(writeln,[a,b,c]).

a

b

c

true.

PP 2016/17 Unit 10 – Advanced Concepts 18/27

Mapping

Mapping Structures/1

Mapping is not restricted to lists, but can be defined for any kind of
structure

Consider arithmetic expression made up of ’*’ and ’+’

e.g., 3 + 4 ∗ a+ b

Suppose we want to remove multiplications by 1 and additions by 0

The algebraic simplifications can be described by a predicate

s(Op, La, Ra, Ans)

It represents that an expression consisting of an operator Op with left
argument La and right argument Ra can be simplified to Ans

e.g., s(+, X, 0, X) represents that X + 0 = X

PP 2016/17 Unit 10 – Advanced Concepts 19/27

Mapping

Mapping Structures/2

The simplification rules are

s(+, X, 0, X).

s(+, 0, X, X).

s(+, X, Y, X+Y). /* catchall for + */

s(*, , 0, 0).

s(*, 0, , 0).

s(*, 1, X, X).

s(*, X, 1, X).

s(*, X, Y, X*Y). /* catchall for * */

The ”catchall” rules (at the end of each operator’s part) are needed for the
case that no simplifiation can be applied

This rule will always succeed, which is important when used in a mapping

PP 2016/17 Unit 10 – Advanced Concepts 20/27

Mapping

Mapping Structures/3

With the above rules in place, we can write a simplification predicate that
maps and simplifies arithmetic expressions

simplify(E, E) :- atomic(E), !.

simplify(E, F) :-

E =.. [Op, La, Ra],

simplify(La, X),

simplify(Ra, Y),

s(Op, X, Y, F), !.

To simplify an expression E, we need first to simplify the left-hand
argument of E, then the right-hand argument of E, then see if the
simplified result can further be simplified

atomic(E) succeeds if E is either an atom or an integer

Simplifying expressions

?- simplify(a*10+(b+0+c)*1, S).

S = a * 10 + (b + c)

true

PP 2016/17 Unit 10 – Advanced Concepts 21/27

Foundation, Strengths and Weaknesses

Outline

1 Interactive Programs

2 Sorting

3 Mapping

4 Foundation, Strengths and Weaknesses

PP 2016/17 Unit 10 – Advanced Concepts 22/27

Foundation, Strengths and Weaknesses

Mathematical Foundation

Just a brief explanation how Prolog fits into the framework of
mathematical logic

First-order logic is a powerful mathematical tool for formalizing descriptions

It is also sometimes called predicate logic

Unfortunately, first-order logic is not decidable
Prolog is based on a decidable subset of first-order logic called Horn clauses
It is still Turing-complete, though

PP 2016/17 Unit 10 – Advanced Concepts 23/27

Foundation, Strengths and Weaknesses

Strengths of Prolog

Prolog is very well suited for application centered around Artificial
Intelligence (AI)

Natural-language processing
AI behavior in games
Constraint satisfaction problems, such as time tabling and scheduling

Prolog (or its descendants) is used in the context of the Semantic Web

A variant called Datalog is used in databases

Also used for simulation and prediction software

PP 2016/17 Unit 10 – Advanced Concepts 24/27

Foundation, Strengths and Weaknesses

Weaknesses of Prolog

Prolog has a steeper learning curve compared to other languages

Fairly focused niche applications, not really a general-purpose language

There are scalability issues, the basic matching strategy used by Prolog is
computationally expensive

Has problems to process large data sets

It is not as declarative as it seems at first glance

If you want to write efficient Prolog programs, you have to know what is
going on behind the scenes

PP 2016/17 Unit 10 – Advanced Concepts 25/27

Summary

Prolog is a declarative programming language based on First-order logic

Specifies what to compute and not how to do it

A Prolog program/knowledge base consists of facts and rules

Evaluating a Prolog program means to prove a goal

Thereby, key concepts are instantiation, matching, and backtracking

Prolog uses recursion instead of loops

Lists and structures are two very important data structures

The cut operator allows to stop backtracking

Should be used with care
A better programming style is to replace it by negation

“Generate and test” is a very common programming pattern

PP 2016/17 Unit 10 – Advanced Concepts 26/27

Summary

The box model shows the execution of a Prolog program

Has four ports: CALL, EXIT, REDO, FAIL

Debugger shows the program execution according to the box model

trace provides an exhausitive tracing mode
debug allows to jump to spy points set by the spy predicate

Accumulators are frequently needed to collect intermediate results when
traversing structures or lists

Helpful to make programs tail-recursive

Sorting is an important operation

Generalized insertion sort, which allows to pass a sorting predicate
Constructing structures with the =.. (univ) operator needed

Another frequent and powerful operation is mapping structures and lists

General map-functions can be used

read and write predicates for simple interactive programs

PP 2016/17 Unit 10 – Advanced Concepts 27/27

	Interactive Programs
	Sorting
	Mapping
	Foundation, Strengths and Weaknesses

