Programming Paradigms
Unit 8 — Prolog Structures and Lists

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

PP 2016/17 Unit 8 — Prolog Structures and Lists 1/46



R
Outline

© Structures

e Equality, Matching and Arithmetic

© Lists

© Examples

PP 2016/17 Unit 8 — Prolog Structures and Lists 2/46



Outline

© Structures

PP 2016/17 Unit 8 — Prolog Structures and Lists 3/46



Structures/1

o If we want to say that Wallace and Wendolene own books, we could
formulate the following facts

owns(wallace, book).
owns (wendolene, book).

@ However, this means that Wallace owns the same object that Wendolene
owns

@ Specifying the title to distinguish may not help:

owns (wallace, perfume).
owns (wendolene, russell_the_sheep).

@ It's not clear that we are talking about books here

@ This can be solved by introducing a structure for books

PP 2016/17 Unit 8 — Prolog Structures and Lists 4/46



Structures/2

A structure in Prolog is a single object which consists of a collection of
other objects, called components

@ A structure can be decomposed into

e a functor and
@ one or more components

@ The functor names the general kind of structure, and corresponds to a data
type in other langues

@ Using a structure for books, we have

owns (wallace, book(perfume,suesskind)).
owns (wendolene, book(russell the_sheep,scotton)).

@ Looking at book(perfume, suesskind)

@ book is the functor of the structure
e perfume and suesskind are its components

PP 2016/17 Unit 8 — Prolog Structures and Lists 5/46



Nested Structures

@ Structures can be nested (arbitrarily deep)

@ Since there were three Bronté writers, we might want to present the author
in more detail with another structure author, e.g.,

owns (gromit, book(wuthering heights, author(emily,bronte))).

@ Prolog allows you to create arbitrarily complex structures to represent
information/knowledge

@ We could improve the book structure by adding an additional argument to
represent which copy the book was

e e.g., the third argument uniquely identifies the book

owns (gromit, book(wuthering heights, author(emily,bronte), 3129)).

PP 2016/17 Unit 8 — Prolog Structures and Lists 6/46



Querying Structures

@ Structures my participate in query processing by usin variables
@ Structures are matched similar to facts

@ For example, if we want to know if Gromit owns any books written by one
of the Bronte sisters, we would query

7- owns(gromit,book(X,author(Y,bronte))).
X = wuthering heights
Y = emily

PP 2016/17 Unit 8 — Prolog Structures and Lists 7/46



Structures and Facts

@ The syntax for structures and facts is identical

o A predicate (used in facts and rules) is actually the functor of a structure
o The arguments of a fact or rule are components of a structure

@ So, Prolog programs are essentially structures, which has several
advantages.

@ All parts of Prolog, even Prolog programs themselves, are made up of
constants, variables and structures.

PP 2016/17 Unit 8 — Prolog Structures and Lists 8/46



)
Outline

e Equality, Matching and Arithmetic

PP 2016/17 Unit 8 — Prolog Structures and Lists 9/46



Equality and Matching

Prolog has a number of built-in predicates
One of them is equality written as “="
The expression X = Y attempts to match X and Y

@ i.e., tries to make X and Y equal

The goal succeeds if X and Y match; otherwise it fails

Following Prolog syntax, it should be written as =(X,Y)

o While this works, Prolog also allows you to use an infix notation: X = Y

PP 2016/17 Unit 8 — Prolog Structures and Lists 10/46



Equality and Matching of Atoms and Numbers

@ Integers and atoms are always equal to themselves

?- wallace = wallace.
yes

?- cheese = cake.

no

7- 1066
yes

?- 1206
no

1066.

15683.

PP 2016/17 Unit 8 — Prolog Structures and Lists 11/46



Equality and Matching of Variables/1

@ A variable always matches itself, i.e., X = X always succeeds

7- X = X.
yes

o If we match two different variables, i.e., X = Y, we have to distinguish
three cases
@ Case 1: none of the variables is instantiated
e The goal always succeeds

PP 2016/17 Unit 8 — Prolog Structures and Lists 12/46



Equality and Matching of Variables/2

@ Case 2: one of the two variables (say Y) is
instantiated

o Goal succeeds, and X is instantiated with

the value of Y Knowledge base
- X = gromit . likes(wallace, toast).
X = it likes(wallace, cheese).
= gromit. likes(gromit, cheese).
? _q likes(gromit, cake).
?— X = likes(wallace,toast). likes (vendolene, sheep).
X = likes(wallace,toast).

?- X =Y, likes(X,toast).
X wallace.
Y wallace.

PP 2016/17 Unit 8 — Prolog Structures and Lists 13/46



Equality and Matching of Variables/3

Knowledge base

@ Case 3: both variables are already

instantiated likes(wallace, toast).
o The values the two variables are likes(wallace, cheese).
. . . likes(gromit, cheese).
|n§tant|ateq with are conwpared likes(gromit, cake)
o Might require the comparison of likes(wendolene, sheep) .
structures

?- likes(X,cheese), likes(Y,cake), X =Y.

X = gromit

Y = gromit

?- likes(X,toast), likes(Y,cake), X =Y.
no

PP 2016/17 Unit 8 — Prolog Structures and Lists 14/46



Equality and Matching of Structures

@ Two structures are equal if
o they have the same functor and number of components and
o all the corresponding components are equal

?7- likes(gromit,cheese) = likes(gromit,X).

X = cheese

?7- f(a,gla,b)) = £(X,g(Y,2)).
X=Y,Y=a,

Z = b.

7- a(b,C,d(e,F,g(h,1,3))) = a(B,c,d(E,f,g(H,1i,j)))
B=bD

C=c¢c

E=e¢e

F=1

H=h

J=13

?- letter(c) = word(c).

no.

PP 2016/17 Unit 8 — Prolog Structures and Lists 15/46



Comparison and Matching

@ Prolog also offers other built-in comparison operators

?- 2> 3.
no

no

@ The \= operator means that X cannot be made equal to Y
e not (X=Y) could also be used

PP 2016/17 Unit 8 — Prolog Structures and Lists 16/46



. ;
Arithmetic

@ Prolog also offers the standard arithmetic operators: +, -, *, /, mod,

@ Just typing in an arithmetic operation will not actually carry it out

?7- 3 + 4.

ERROR: toplevel: Undefined procedure: (+)/2 ...
?7-X=3+4.

X =3+ 4.

-7 =3+ 4.

no

@ Using the is operator will evaluate the right-hand side and match it to the
left-hand side

?- 7 is 3 + 4.

yes
?7- X is 3 + 4.
X=17.

PP 2016/17 Unit 8 — Prolog Structures and Lists 17/46



Arithmetic Example/1

@ Given the following fact base, compute the population density of countries

pop(usa,313).
pop(italy,61).

pop (uk,63) .
area(usa,9.826).
area(italy,0.301).
area(uk,0.243).

@ The following rule computes the density

density(X,Y) :- pop(X,P),
area(X,A),
Y is P/A.

@ This rule is read as follows:
o The population density of country X is Y, if:

@ The population of X is P, and
@ The area of X is A, and
@ Y is calculated by dividing P by A.

PP 2016/17 Unit 8 — Prolog Structures and Lists 18/46



Arithmetic Example/2

@ Compute population density of USA

7- density(usa,Y).
Y = 31.854264197028289
yes

o Compute all densities

7- density(X,Y).
= usa
31.854264197028289 7

italy
202.65780730897012 7
= uk

259.25925925925924 .

T T S I S

PP 2016/17 Unit 8 — Prolog Structures and Lists 19/46



Outline

© Lists

PP 2016/17 Unit 8 — Prolog Structures and Lists 20/46



Lists/1

@ We have already seen structures as a construct to build more complicated
data types

@ Another important type supported by Prolog is a list

@ The elements of a list are enclosed in square brackets []

?- [1,2,3] = [1,2,3].
yes

?- [1,2,3] = [X,Y,Z].
X =1,

Y = 2,

Z = 3.

@ Lists are matched similar to structures

PP 2016/17 Unit 8 — Prolog Structures and Lists 21/46



Lists/2

@ The elements of a list can be any terms — constants, variables, structures,

lists

and they can be mixed

@ Examples of valid lists are

PP 2016/17

1

[2,3,5,a,b]

[the,cat,sat, [on,the,mat]]

[a,V,b, [X,Y]]

[the,book([programming,in,prologl) ,by,authors(C,M)]

Unit 8 — Prolog Structures and Lists

22/46



Internal Representation of Lists

@ Internally, lists are represented as compound terms using

o the functor "."/2 (dot, list constructor), where the first argument is the
first element and the second argument is the rest of the list, and

o the atom [] representing the empty list, which is the second argument on
the innermost level.

@ For example, the list
[a,b,cl]
corresponds to the compound term
.(a, .(b, .(c, O
@ So, [1,2,3] is just a more convenient notation for an important structure
@ We can verify this in Prolog:
- X = .(a, .(b, .(c,[DN.

X = [a, b, c]
Yes

@ In SWI Prolog v7, the functor "." has been replaced by the functor "[[]"

PP 2016/17 Unit 8 — Prolog Structures and Lists 23/46



Splitting Lists in Head and Tail/1

"

@ We can split lists into a head and tail using the operator

o Head is the first element of the list
e Tail is the (possibly empty) rest of the list, and it is a list

?7- [Head|Taill] = [1,2,3].

Head = 1,

Tail = [2,3].

?- [Head|Tail] = [].
no.

?- [Head|Taill = [1].
Head = 1,

Tail = [].

PP 2016/17 Unit 8 — Prolog Structures and Lists 24/46



Splitting Lists in Head and Tail/2

@ Some more examples

?- [HIT] = [[the,cat],sat].
H = [the,cat],

T = [sat].

?- [HIT] = [the, [cat,sat],down].
H = the,

T = [[cat,sat],down].

7- [HIT] = [X+Y,x+y].

H = X+Y,

T = [x+y].

PP 2016/17 Unit 8 — Prolog Structures and Lists 25/46



Lists and Recursion/1

@ Let's assume we want to find out if an element is part of a list
e Prolog has the built-in predicate member (X,Y), but define our own predicate
@ We have to do this recursively in Prolog
e There are no loops like in other programming languages
@ Recursion in Prolog means that a predicate appears on the left- and the
right-hand side of a rule
o For example, an element is in a list if it is

o the head of the list or
e in the tail of the list

is_in(X,[H|_]) :- X = H.
is_in(X, [_IT]) :- is_in(X,T).

?- is_in(d, [a,b,c,d,e,f]).
true

PP 2016/17 Unit 8 — Prolog Structures and Lists 26/46



Lists and Recursion/2

@ Step-by-step execution of the goal on the previous slide

is_in(X,[H|]) :- X = H.
is_in(X, [_IT]) :- is_in(X,T).

?- is_in(d, [a,b,c,d,e,f]).

true
(Recursive) call Rule 1 Rule 2
is_in(d, [a,b,c,d,e,f]) X=d, H=a --> false X =4d, T = [b,c,d,e,f]
is_in(d, [b,c,d,e,f]) X=d, H=b --> false X =4d, T = [c,d,e,f]
is_in(d, [c,d,e,f]) X=d, H=c¢c --> false X =4d, T = [d,e,f]
is_in(d, [d,e,f]) X=d, H=4 --> true

PP 2016/17 Unit 8 — Prolog Structures and Lists 27/46



Lists and Recursion/3

@ Does the is_in predicate cover all cases?

@ Having a closer look at the recursion, we observe that there are actually
two base cases for the is_in predicate

o Base case 1: element X is the head of the list (first predicate)
o Base case 2: element X is not in the list, then the list is empty

@ However, the second base case need not to be implemented, as none of the
two predicates matches an empty list as second parameter

@ However, we could add the following clause for the second base case
is_in(X,L) :- L = [], fail.

o Predicate fail returns false

@ The termination of is_in is guaranteed as in the recursive call the list
passed to the goal is shorter, hence

o eventually X is encountered as first element of the list (base case 1),
e or the list is empty (base case 2)

PP 2016/17 Unit 8 — Prolog Structures and Lists 28/46



Enumerating Elements and Generating Lists

@ The predicate is_in can also be used to enumerate all elements of a list

?- is_in(X,[1,2,a]).

X =1;
X = 2;
X = a;
false

@ We can even use it to generate lists

?- is_in(a,L).
L = [a|_G5033893];
L = [_G5033893, al| _G5033898]

@ _G5033893, ... are variables

PP 2016/17 Unit 8 — Prolog Structures and Lists 29/46



List Predicates — last/2

@ Finding the last element of a list

last (X, [X]).
last (X, [_IT]) :- last(X,T).

?7- last (X, [talk,of,the,town]).
X = town

PP 2016/17 Unit 8 — Prolog Structures and Lists 30/46



List Predicates — next_to/2

@ Checking for two consecutive elements of a list

next_to(X,Y, [X,YI_]).
next_to(X,Y,[_1Z]) :- next_to(X,Y,Z).

?- next_to(X,Y, [talk,of,the,town]).
= talk,

of ;

= of,

the ;

the,

town

ST B S I
|

PP 2016/17 Unit 8 — Prolog Structures and Lists 31/46



List Predicates — append/3

@ append is a very useful built-in predicate that can be used in a flexible way
@ Appending two lists

append([],L,L).
append ([X|L1],L2, [X|L3]) :- append(L1,L2,L3).

?7- append([i,like], [prolog]l,L).
L = [i,like,prolog]

@ Generating sublists

?7- append(X,Y,[i,1like,prolog]).

X=1[], Y= [i,like,prolog]l ? ;
X = [i], Y = [like,prologl 7 ;
X = [i,like], Y = [prolog] ? ;
X = [i,like,prologl, Y = [1 ? ;
no

@ Computing the difference between lists

7- append([i],Y, [i,like,prolog]).
Y = [like,prolog]

PP 2016/17 Unit 8 — Prolog Structures and Lists 32/46



List Predicates — append/3

@ Prolog is very flexible with regard to the initialization of parameters
@ e.g., in append any of two parameters can be initialized

@ We can easily implement last, next_to, and is_in using append

last(E,List) :- append(_, [E],List).
next_to(X,Y,List) :- append(_, [X,Y|.],List).

is_in(X,List) :- append(_, [X|_],List).

PP 2016/17 Unit 8 — Prolog Structures and Lists 33/46



Strings in Prolog/1

@ Strings in Prolog can be quite confusing if you come from another language
@ There are two “types” of strings
@ Strings enclosed in single quotes (') are atoms

?- ’hello’ = S.

S = hello.

write(’hello’)
hello
true.

@ As this class of strings are atoms, they naturally cannot be manipulated

PP 2016/17 Unit 8 — Prolog Structures and Lists 34/46



Strings in Prolog/2

@ Strings (or terms) written in double quotes (") are immediately converted
to a list of character codes (ASCII)

?- "hello" = L.
L = [104, 101, 108, 108, 111].

write("hello").
[104, 101, 108, 108, 111]

true.

o As of SWI-Prolog v7, only back quoted text is converted,
e e.g., ‘text‘ is represented as [116,101,120,116],
whereas text enclosed in double quotes is read as a sequence of characters

PP 2016/17 Unit 8 — Prolog Structures and Lists 35/46



Strings in Prolog/3

@ Sometimes, single-quoted strings need to be converted to character lists,
e.g., to print the first character of a string or to search for a substring.

@ This can be done by the name predicate.

?- name(’hello’, L).
L = [104, 101, 108, 108, 111].

@ SWI-Prolog provides a large number of built-in predicates for strings, e.g.,

concatenate strings, string length, conversion between terms and strings,
etc.

PP 2016/17 Unit 8 — Prolog Structures and Lists 36/46



Prefix Example

@ The following predicate verifies, whether a string S1 is a prefix of another
string S2.

prefix (81, S2) :-
atom(S1),
atom(S2),
name (S1, L1),
name(S2, L2),
append (L1, _, L2).

@ We can use it as follows:

?7- prefix(’hello’, ’hello world’).
true.

7- prefix("hello", "hello world").
false.

PP 2016/17 Unit 8 — Prolog Structures and Lists 37/46



Outline

© Examples

PP 2016/17 Unit 8 — Prolog Structures and Lists 38/46



The Towers of Hanoi/1

@ Goal: move a stack of n disks from one peg to another with the help of an
auxiliary peg, where
@ Only one disk can be moved at a time
o A move can only take the upper disk of a stack
o A larger disk can never be placed on top of a smaller disk

= L L

@ Legend: Somewhere in the surrounding of Hanoi, there is a monastery,
where the monks have to perform this task assigned to them by God when
the world was created with n = 64 golden disks. At the moment they
complete their task, the world will collapse.

@ The minimum number of moves to solve a Tower of Hanoi puzzle is 2" — 1

o This is roughly 585 billion years for the monks, if they move the disks at a
rate of one move per second

PP 2016/17 Unit 8 — Prolog Structures and Lists 39/46



The Towers of Hanoi/2

@ Recursive solution
e Termination: there are no disks on peg A
Move n — 1 disks from peg A to C (notice the recursive move!)
Move disk n from peg A to B
Move n — 1 disks from peg C to B

@ Predicate Move (N,A,B,C) moves n disks from peg A to peg B with the
help of C

hanoi(N) :- move(N,pegh,pegB,pegC).

move(1,A,B,_.) :- write([move,disc,from,A,to,B]), nl.
move(N,A,B,C) :-

N> 1,

M is N-1,

move(M,A,C,B),

move(1,A,B,.),

move(M,C,B,A).

PP 2016/17 Unit 8 — Prolog Structures and Lists 40/46



Sudoku/1

@ Sudoku is a logic-based, combinatorial number-placement puzzle.

@ The objective is to fill a 9x9 grid with digits so that each column, each row,
and each of the nine 3x3 sub-grids (boxes) contains all of the digits from 1
to 9.

@ A partially completed grid is given, which has a unique solution.

5|3 7
6 1]19|5
98 6
8 6 3
4 8 3 1
7 2 6
6 2|8
411(9 5
8 719

PP 2016/17 Unit 8 — Prolog Structures and Lists 41/46



Sudoku/2

@ We make the problem easier and consider a

4x4 sudoku, where rows, columns and boxes 4
have to be filled with a permutation of the
numbers 1,...,4 2
@ We can model the Sudoku problem in Prolog 1
using list permutations
o Each row must be a permutation of [1,2,3,4] 3
o Each column must be a permutation of
[1.2,3,4]
o Each 2x2 box must be a permutation of
[1,2,3,4] X11 | X12 | X13 | X14
@ The Sudoku is represented by a list of lists X21 | X22 | X23 | X24
[[X11, X12, X13, X14], X31 | X32 | X33 | X34
[X21, X22, X23, X24],
[X31, X32, X33, X34], X41 | X42 | X43 | X44

[X41, X42, X43, X44]]

PP 2016/17 Unit 8 — Prolog Structures and Lists 42/46



Sudoku/3

sudoku([R1, R2, R3, R4]) :-
R1 = [X11,X12,X13,X14],

R2 = [X21,X22,X23,X24],
R3 = [X31,X32,X33,X34],
R4 = [X41,X42,X43,X44],
% rows

permutation([X11,X12,X13,X14],[1,2,3,4]),
permutation([X21,X22,X23,X24],[1,2,3,4]),
permutation([X31,X32,X33,X34],[1,2,3,4]),
permutation([X41,X42,X43,X44],[1,2,3,4]),
% cols

permutation([X11,X21,X31,X41],[1,2,3,4]),
permutation([X12,X22,X32,%42], [1,2,3,4]),
permutation([X13,X23,X33,X43],[1,2,3,4]),
permutation([X14,X24,X34,X44],[1,2,3,4]),
% boxes

permutation([X11,X12,X21,X22]1,[1,2,3,4]),
permutation([X13,X14,X23,X24],[1,2,3,4]),
permutation([X31,X32,X41,X42],[1,2,3,4]),
permutation([X33,X34,X43,X44],[1,2,3,4]).

PP 2016/17 Unit 8 — Prolog Structures and Lists 43/46



Binary Search Trees/1

@ Binary search trees can be represented in Prolog by a recursive structure
with three arguments bst (X,L,R), where

e K is the key of the root
o L is the left sub-tree
o R is the right sub-tree

@ The empty (null) tree is usually represented as the constant nil.

@ Example tree with 6 nodes:
bst (6,

bst (4, e
bst(2,nil,nil),

bst(5,nil,nil)),

bst (9, o 9
bst(7, nil, nil),
nil) ) () ()

PP 2016/17 Unit 8 — Prolog Structures and Lists 44/46



Binary Search Trees/2

@ A basic operation is bstmem(Tree,X), which succeeds if X is contained in
Tree

bstmem(bst(X,_,.), X).
bstmem(bst(K,L,.), X) :-
X < K,
bstmem(L, X).
bstmem(bst (K,_,R), X) :-
X > K,
bstmem (R, X)

@ Examples:

?- bstmem(nil, 3).

No

?- bstmem(bst(5,bst(8,nil,nil) ,nil),8).
Yes

PP 2016/17 Unit 8 — Prolog Structures and Lists 45/46



Binary Search Trees/3

@ Another basic operation is inorder (Tree, L) that succeeds if L contains
the keys in Tree in inorder

inorder(bst(K,L,R), List) :-
inorder (L, LL),
inorder(R, LR),
append (LL, [K|ILR], List).
inorder(nil, [1).

@ Examples:
?- inorder(bst(5,bst(4,nil,nil),bst(8,nil,nil)),L).
L = [4,5,8]

@ Modify the above predicate to a predicate

o preorder(Tree,L) that succeeds if L contains the keys in Tree in preorder
e postorder (Tree,L) that succeeds if L contains the keys in Tree in
postorder

PP 2016/17 Unit 8 — Prolog Structures and Lists 46/46



	Structures
	Equality, Matching and Arithmetic
	Lists
	Examples

