PP 2016/17

Programming Paradigms
Unit 7 — Debugging and the Box Model
J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

Unit 7 — Debugging and the Box Model 1/10



T
The Box Model

@ The box model of Prolog execution provides a simple way to show the
control flow
@ A box represents the invocation of a single predicate (procedure)
@ The box has four ports (with associated events)
@ CALL: The first call of a predicate; control enters into the box
9 EXIT: The goal has been proven
@ REDO: The system comes back to a goal, trying ot re-satisfy it, i.e.,

backtracking
e FAIL: The goal/predicate fails

CALL EXIT
— —
Predicate
FAIL REDO
— —

PP 2016/17 Unit 7 — Debugging and the Box Model 2/10



o
Debugging

@ The box model is used to debug the execution of Prolog programs
@ Predicate trace/0 starts the exhaustive tracing mode
@ notrace/0 stops the tracing mode
@ The debugger then displays a line for every port and waits for a command

@ With Return or c ("creep”) one steps to the next port
@ The command a (abort) stops the execution of the query

@ Other debugger commands are available

9 Usually displayed when entering ? or h

PP 2016/17 Unit 7 — Debugging and the Box Model 3/10



o
The Box Model Example/1

@ Consider the following facts (e.g., emil is the father of jan)

father(jan,emil).
father(julia,emil).
father(emil,arno).

@ The goal trace/0 activates "tracing”

?- trace, father(X,emil).
Call: father(_16,emil) 7
Exit: father(jan,emil) ?

X =jan 7 father(X,emil)
FAIL REDO
— e

CALL EXIT
—

Redo: father(jan,emil) 7
Exit: father(julia,emil) 7
X = julia.

PP 2016/17 Unit 7 — Debugging and the Box Model 4/10



o
The Box Model Example/2

@ Now add the following rule

siblings(X,Y)

@ The box model for the goal siblings(X,Y) is nested
9 The CALL of siblings enters the CALL of father

:— father (X, Z),
father(Y,Z),
X \= Y.

o The EXIT of father enters the CALL of another box for father, etc.

CALL

FAIL

PP 2016/17

father (X,Y)

EXIT/CALL

siblings(X,Y)

REDO/FAIL

father(Y,Z)

EXIT/CALL

REDO/FAIL

EXIT

Unit 7 — Debugging and the Box Model

REDO

5/10



-
The Box Model Example/3

@ The debugger output for the query trace, siblings(jan,Y)

(&)
(2)
(2)
(3)
(3
(4)
(4)
(3
(3
(5)
(5)
(&)
X =
(&)
(3
(3)
(&)

no

PP 2016/17

0

1
1
1
1
1
1
1
1
1
1
0

julia 7
REDO:
REDO:
FAIL:
FAIL:

1
2
2
1

CALL
CALL
EXIT
CALL

siblings(jan, Y) 7
father(jan, Z) 7
father(jan, emil) ?
father (Y, emil) ?

*EXIT father(jan, emil) 7

CALL
FAIL
REDO
EXIT
CALL
EXIT
EXIT

jen \= jan 7

jan \= jan?

father(Y, emil) ?

father(julia, emil) ?

julia \= jan ?

julia \= jan ?
siblings(jan, julia) ?
siblings(jan,julia) 7
father (julia,emil) ?
father(Y,emil) ? ¢
siblings(jan,Y) 7 c

Unit 7 — Debugging and the Box Model

6/10



T
Remarks about the Box Model

@ The exact form of the output depends on the Prolog system

@ The above output contains a box number in the first column and a nesting
depth (call stack depth) in the second column
@ The asterisc "*" before EXIT marks that there are possibly further
solutions (nondeterministic exit)
o Otherwise, the box is already removed, and not visited during backtracking
(i.e., no REDO-FAIL will be shown)
@ Because of such optimizations, the debugger output might violate the pure
four-port model.
@ Tracing is switched on by the predicate trace/0 and switched off by the
predicate notrace/0.

@ Another useful debugging predicate is spy/1, which allows to specify
specific subgoals, for which the user wants to obtain detailed information of
the box model

PP 2016/17 Unit 7 — Debugging and the Box Model 7/10



o
Spy Points/1

@ Tracing is doing exhaustive debugging of all subgoals
@ Another useful debugging predicate is spy/1
o Allows to inspect the execution for selected subgoals only

@ The following predicate sets a "syp point” on the predicate father/2
7- spy(father/2).

@ If the debug predicate is now used, Prolog executes the program without
interruption until the first spypoint is reached

@ Then one can continue debugging as with trace or "leap” to the next spy
point (usually with the command 1)

@ nodebug stops the debugger, nospy removes the spy points

PP 2016/17 Unit 7 — Debugging and the Box Model 8/10



o
Spy Points/2

@ The debugger output for the query debug, siblings(jan,Y) after
setting a spy point for father/2

?- debug, siblings(jan,Y).

* Call: (8) father(jam, _G3270) ? creep
* Exit: (8) father(jan, emil) 7 creep

* Call: (8) father(_G3159, emil) 7 creep
* Exit: (8) father(jan, emil) ? creep
Call: (8) jan\=jan ? creep

Fail: (8) jan\=jan ? creep

* Redo: (8) father(_G3159, emil) ? creep
* Exit: (8) father(julia, emil) 7 creep
Call: (8) jan\=julia ? creep

Exit: (8) jan\=julia ? creep

Exit: (7) siblings(jan, julia) ? creep
Y = julia.

o Notice that the CALL port of sibling is not shown!

PP 2016/17 Unit 7 — Debugging and the Box Model 9/10



-
Spy Points/3

@ The comand leap jumps to the next spy point

?7- debug, siblings(jan,Y).

Call: (8) father(jan, _G1003) ? 1leap
Exit: (8) father(jan, emil) ? 1leap
Call: (8) father(_.G889, emil) 7 leap
Exit: (8) father(jan, emil) 7 1leap
Exit: (8) father(julia, emil) 7 leap
= julia.

<X X ¥ X% %

PP 2016/17 Unit 7 — Debugging and the Box Model 10/10



