Programming Paradigms
Unit 6 — Prolog Basics
J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

PP 2016/17 Unit 6 — Prolog Basics 1/39

I
QOutline

© Basics of Prolog

9 Backtracking

O Rules

PP 2016/17 Unit 6 — Prolog Basics 2/39

QOutline

© Basics of Prolog

PP 2016/17 Unit 6 — Prolog Basics 3/39

Logic Programming

@ Logic programming is a programming paradigm based on formal logic

@ Programming languages for logic programming are very different to those
encountered so far
@ They are declarative languages
@ Programmer defines “what” to do, program will figure out “how” to do it
@ In other words, you express the logic of a computation without describing its
control flow
@ In imperative and object-oriented languages, the programmer has to do both
@ A program written in a logic programming language is a set of sentences in
logical form, expressing facts and rules about some problem domain

PP 2016/17 Unit 6 — Prolog Basics 4/39

Prolog

@ One of the most well-known logic programming languages is Prolog

@ Stands for PROgramming in LOGic
9 Developed by Alain Colmerauer and colleagues in Marseille in the early 1970s

@ Prolog is very useful in some problem areas

@ such as artificial intelligence, natural language processing, databases, ...
@ But pretty useless in others

@ such as for instance graphics or numerical algorithms

@ Major logic programming language families include Prolog, Answer set
programming (ASP) and Datalog.

PP 2016/17 Unit 6 — Prolog Basics 5/39

Hello World!

@ Start a Prolog interpreter, e.g., gprolog for GNU Prolog or swipl for SWI
Prolog

@ The Prolog Interpreter shows a prompt and is ready to accept programs

?-

@ Let's have a look at a very simple program: Hello World!

?- write(’Hello World!’), nl.

@ This will output (may also say yes instead of true):

Hello World!
true

@ Although this works, it's a very untypical example of a Prolog program

PP 2016/17 Unit 6 — Prolog Basics 6/39

Language Basics: Data and Queries

@ Prolog has two parts

@ One to represent the data
@ Another to query the data

@ Data is represented in the form of facts and logical rules
@ Facts: a fact is a basic assertion about some world

@ Mary is a student
@ Students like books

@ Rules: a rule is an inference about facts in that world
9 A person likes books if she/he is a student

@ Query: a query is a question about that world
9 Does Mary like books?

PP 2016/17 Unit 6 — Prolog Basics 7/39

Knowledge Base

@ Facts and rules go into a knowledge base

@ Prolog allows you to express the contents of a knowledge base
9 Usually a compiler turns this base into a form efficient for querying

@ Querying links together facts and rules to tell you something about the
world modeled in the knowledge base

PP 2016/17 Unit 6 — Prolog Basics 8/39

Facts

@ Facts are basic assertions/statements about objects in the world

@ Consider the animation series “"Wallace and Gromit”
@ Wallace is a good, eccentric cheese loving inventor
@ Gromit is a silent yet intelligent anthropomorphic dog
9 ...

A
-y
D

(&

~
®
53

@ This is represented in a little Prolog knowledge base of five facts

likes(wallace, toast).
likes(wallace, cheese).
likes(gromit, cheese).
likes(gromit, cake).
likes(wendolene, sheep).

@ The facts can be read as the following assertions about the world
o “Wallace likes toast”
o “Wallace likes cheese”
@ ...

PP 2016/17 Unit 6 — Prolog Basics 9/39

Atoms

@ Atoms refer to individual things/objects

9 e.g., wallace, gromit, wendolene, toast, cheese, cake, and sheep in the
facts on the previous slide are atoms

@ Atoms always

9 begin with a lower-case character, e.g., wallace
@ or they have to be quoted, e.g., "Wallace’'

@ An atom is a fixed value, similar to a Ruby symbol

PP 2016/17 Unit 6 — Prolog Basics 10/39

Predicates

@ Predicates represent relationships between objects in the world
@ In the facts on the previous example, 1likes is a predicate
9 e.g., likes(gromit, cheese)
@ The predicate likes has two parameters
@ The order of the parameters is important

PP 2016/17 Unit 6 — Prolog Basics 11/39

Compiling/Loading the Knowledge Base

@ We write the facts in a file "wallace.pl" and load it into the interpreter

@ Checks for syntax errors
@ Compiles the knowledge base into form that is efficient for querying

?7- [’wallace.pl’]

% wallace.pl compiled 0.00 sec, 8 clauses
true.

@ Now we are ready to ask some questions

@ The most basic ones are questions about facts

PP 2016/17 Unit 6 — Prolog Basics 12/39

Queries

@ After compilation we can query the Prolog

knowledge base Knowledge base

@ Prolog tries to match a query to known
facts likes(wallace, toast).
likes(wallace, cheese).
. . likes(gromit, cheese).
7= likes (gromlt ,cheese) . likes(gromit, cake).
true likes(wendolene, sheep).

?7- likes(wallace,sheep).
false

@ This confirms that gromit likes cheese, but wallace doesn't like sheep

@ true means that Prolog is able to prove this statement given the actual
knowledge base

@ false means that Prolog cannot prove this statement given the actual
knowledge base

PP 2016/17 Unit 6 — Prolog Basics 13/39

Variables and Instantiation/1

@ Variables make queries more exciting Knowledge base
@ Variables begin with an uppercase letter or
with an underscore '_x’ likes(wallace, toast).
. . likes(wallace, cheese).
@ We can ask Prolog to find values for variables likes(gromit, cheese).

likes(gromit, cake).

9 e.g., Who likes cheese? !
likes(wendolene, sheep).

?- likes(Who,cheese).

@ Who is an uninstantiated variable, i.e., it has no assigned value
@ Prolog searches the KB from the beginning, trying to find a matching fact

@ The first matching fact is likes(wallace,cheese), so Who is instantiated
with wallace

?- likes(Who,cheese).
Who = wallace

@ At this point Prolog outputs Who = wallace and asks what to do next

PP 2016/17 Unit 6 — Prolog Basics 14/39

Variables and Instantiation/2

@ We can
@ stop searching by just hitting the return key
@ or continue searching by entering " ;"
@ If we continue, Prolog
@ forgets the value wallace for the variable Who
@ and continues at the position it previously stopped (using a placemarker)

@ Continuing will output Who = gromit; then the query terminates as there
will be no further solutions

?- likes(Who,cheese).
Who = wallace ;

Who = gromit.
?_

PP 2016/17 Unit 6 — Prolog Basics 15/39

Anonymous Variables

@ Sometimes we want to use a variable but don't care about its value
@ We don't want to use the variable anywhere else

@ e.g., is there anyone who likes cheese (but we don’t need to know who)
?- likes(_,cheese).

true 7
yes

@ We use an underscore _ for the anonymous variable

@ Several occurrence of _in the same clause do not need to be given
consistent interpretations

PP 2016/17 Unit 6 — Prolog Basics 16/39

QOutline

9 Backtracking

PP 2016/17 Unit 6 — Prolog Basics 17/39

Goals/1

@ By submitting a query, we ask Prolog to try to satisfy a goal

@ We can ask Prolog to satisfy the conjunction of two goals using the ",
operator (pronounced “and")

7- likes(wallace,toast), likes(gromit,toast).
no

@ We can combine conjunctions with variables to make queries more
interesting

PP 2016/17 Unit 6 — Prolog Basics 18/39

Goals/2

@ Now that we found out that at least one of them does not like toast . ..
is there something both of them like?

7- likes(wallace,What), likes(gromit,What).
What = cheese;
no

@ How does Prolog process this query (conceptually)?

@ |t uses backtracking to try to satisfy the first goal and then the second goal

PP 2016/17 Unit 6 — Prolog Basics 19/39

Backtracking/1

@ Process the following query consisting of two goals

?- likes(wallace,What) > likes(gromit,What).

first goal second goal

likes(wallace,toast)
likes(wallace,cheese)
likes(gromit,cheese)
likes(gromit,cake)

likes(wendolene,sheep)
@ Attempt to satisfy the first goal

PP 2016/17 Unit 6 — Prolog Basics 20/39

Backtracking/2

?—llikes(wallace,Whgt)

toast toast

> likes(gromit,What) .

likes(wallace,toast)
likes(wallace,cheese)
likes(gromit,cheese)
likes(gromit,cake)

likes(wendolene, sheep)

@ The first goal succeeds, instantiating What = toast

@ Next, attempt to satisfy the second goal

PP 2016/17 Unit 6 — Prolog Basics 21/39

Backtracking/3

3

?—llikes(wallace,Whgt)

toast toast

likes (gromit,What). ‘

likes(wallace,toast)
likes(wallace,cheese)
likes(gromit,cheese)
likes(gromit,cake)

likes(wendolene, sheep)

@ The (fully instantiated) second goal likes(gromit,toast) fails

@ Next, backtracking starts: forget the instantiation What = toast and
attempt to re-satisfy the first goal

PP 2016/17 Unit 6 — Prolog Basics 22/39

Backtracking/4

?—llikes(wallace,Whgt)

> likes(gromit,What) .

cheese cheese

likes(wallace,toast)

likes(wallace,cheese)
likes(gromit,cheese)
likes(gromit,cake)

likes(wendolene, sheep)

@ The first goal succeeds again, instantiating What = cheese

@ Next attempt to satisfy the second goal

PP 2016/17 Unit 6 — Prolog Basics 23/39

Backtracking/5

>

7- [likes(vallace,What) | » | Likes (gromit,What). ‘

| |

cheese cheese

likes(wallace,toast)
likes(wallace,cheese)
likes(gromit,cheese)
likes(gromit,cake)

likes(wendolene,sheep)

@ The second goal succeeds

@ Prolog notifies you of success with What = cheese and waits for a reply

PP 2016/17 Unit 6 — Prolog Basics 24/39

- Rules |
QOutline

O Rules

PP 2016/17 Unit 6 — Prolog Basics 25/39

R
Rules/1

(4

Suppose we want to state that Wallace likes all people

®

Could be done by many facts

likes(wallace, gromit).
likes(wallace, tom).

©

. but this becomes tedious and long

®

Another way to state the same would be:
Wallace likes any object provided it is a person

(2

This fact is in the form of a more compact rule

PP 2016/17 Unit 6 — Prolog Basics 26/39

Rules/2

@ A rule is a general statement about objects and their relationships
@ A rule in plain English could be:

X is a sister of Y if:
X is female and
X and Y have the same parents.

@ Important: a variable stands for the same object wherever it occurs in a rule

PP 2016/17 Unit 6 — Prolog Basics 27/39

- R
Rules/3

@ Rules in Prolog consist of a head and a body connected by the symbol
":=" (pronounced if)

head :- body

@ The head is a predicate that describes what the rule is intended to define

@ The body is a conjunction of goals that must be satisfied for the head to
be true

@ In other words: to prove the head, the body needs to be proven

PP 2016/17 Unit 6 — Prolog Basics 28/39

R
Rules Example/1

(4

If we want to express that Wallace is a friend of anyone who likes cheese,
we could formulate it like this:

friend(wallace,X) :- likes(X,cheese).

®

X is a variable and can match any object

®

Running the query friend(wallace,X) will produce two results:

9 gromit is ok
@ wallace not really ok

@ We can exclude wallace by saying that X shouldn’t be wallace

friend(wallace,X) :- likes(X,cheese), \+(X=wallace).

®

\+ is the negation/logical not of a subgoal (not can also be used)

This only lists friends of wallace (those persons who like cheese)

(2

PP 2016/17 Unit 6 — Prolog Basics 29/39

R
Rules Example/2

@ A generalization of the rule on the previous slides would be if X and Y like
the same thing Z, and X and Y are different, then X and Y are friends

@ This makes our knowledge base more interesting

likes(wallace, toast).
likes(wallace, cheese).
likes(gromit, cheese).
likes(gromit, cake).
likes(wendolene, sheep).

friend(X,Y) :-
likes(X,2),
likes(Y,Z),
\+(X=Y).

PP 2016/17 Unit 6 — Prolog Basics 30/39

- R
Rules Example/3

@ Let's try it out with constants in the query

7- friend(gromit,wallace).
yes

7- friend(wallace,gromit).
yes

?- friend(wallace,wallace).
no

?- friend(wallace,wendolene).
no

PP 2016/17 Unit 6 — Prolog Basics 31/39

- R
Rules Example/4

@ We can also use variables instead of atoms in the query.

@ Now let's ask who is a friend of Wallace:

?- friend(wallace,Who).

Who = gromit 7

no

’

@ Or let’s find all pairs of friends:

?7- friend(Whol,Who?2).

Whol
Who?2
Whol
Who?2
no

PP 2016/17

wallace

= gromit 7

gromit
wallace 7

)

)

Unit 6 — Prolog Basics

32/39

R
Queen Victoria’s Family/1

@ Just using facts, rules, and variables we can already do some interesting
things, e.g., model Queen Victoria's family

@ We use the predicate parents(X,Y,Z) to represent the parents of X are Y
and Z

@ We also use male(X) and female(X) in the obvious way
male(albert) .
male(edward) .

female(alice).
female(victoria).

parents(edward, victoria, albert).
parents(alice, victoria, albert).

PP 2016/17 Unit 6 — Prolog Basics 33/39

R
Queen Victoria’s Family/2

@ Now we add a rule for sister: X is a sister of Y if X is female and they both
have the same parents

sister of (X, Y) :-
female (X),
parents(X, M, F),
parents(Y, M, F).

@ Now you can query:

?- sister_of(alice, edward).
true

?7- sister_of(alice, X).
X = edward

PP 2016/17 Unit 6 — Prolog Basics 34/39

R
Map Coloring/1

@ A slightly more complex example

@ Assume we want to color a map, such that two regions with a common
border don’'t have the same color

Regians of Italy

1. Piernonte
2. walle D'Ansts
#. Lemnbardia
4. Trentino-Alte

6. Friuli-venezia
Giulia

7. Liguria

8. Emilia-Romagna
9. Toscans

10, Umnbria

11, Marche

12, Lazio

13 Abruzzo

14, Molis=

15, Campania
16, Puglia

17, Basilicata
12, Cslzbris
19, gicilia

20, sardegna

PP 2016/17 Unit 6 — Prolog Basics 35/39

R
Map Coloring/2

]

o

In order to simplify things, we'll only look at regions 3, 4, 5, and 6 and use
the colors red, green, and blue
Now all we have to do is describe this to Prolog

@ We tell Prolog the different colors to use for pairs of neighoring regions

9 and the neighoring regions

border(red,green) .
border (red,blue).
border(green,red) .
border (green,blue) .
border (blue,red) .
border (blue,green) .

coloring(L,TAA,V,FVG) :-
border (L,TAA),
border(L,V),
border (TAA,V),
border (V,FVG) .

PP 2016/17 Unit 6 — Prolog Basics 36/39

- R
Map Coloring/3

@ Querying coloring(L,TAA,V,FVG) will now provide all the answers:
7- coloring(L,TAA,V,FVG).

FVG =r
L=r
TAA = g
V=b7 ;
FVG = g
L =

<
]
o I R
~

PP 2016/17 Unit 6 — Prolog Basics 37/39

R
Where’s the Program?

@ In Prolog you don't have to write a program

@ You express the logic of a problem in facts and inferences
@ And then let the computer do the work in figuring out a solution

@ Solving the map coloring problem with a language like Java or Ruby would
be much harder to do

PP 2016/17 Unit 6 — Prolog Basics 38/39

- Rues|
Predicates Revisited

@ Predicates can be defined by a combination of facts and rules

@ We use also the term clause of a predicate to refer either to a fact or a rule
defining the predicate

PP 2016/17 Unit 6 — Prolog Basics 39/39

	Basics of Prolog
	Backtracking
	Rules

