Programming Paradigms
Unit 5 — Recursion
J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

PP 2016/17 Unit 5 — Recursion

1/32

I
QOutline

© Recursion

9 Writing Recursive Functions

PP 2016/17 Unit 5 — Recursion 2/32

QOutline

© Recursion

PP 2016/17 Unit 5 — Recursion 3/32

Recursion

A Different Kind of Loop/1

@ The languages we are covering
next have a lack of iterative
constructs

@ That means, they have no
loops

@ That does not mean that they
are less expressive, they use
recursion, instead

PP 2016/17

WHAT'S THE PIFFERENCE
BETWEEN ...

©20!, ETER DAV IS

W, TECHCURM UPGEON. com,

Unit 5 — Recursion

4/32

A Different Kind of Loop/2

@ It depends on the language how easy and efficient one or the other is
@ Some languages lack recursion: Fortran77, Assembler
9 Some languages allow recursion, but aren't very efficient with it: C4++, Java
@ Languages we cover next are optimized for recursion

I\";‘(‘ (‘ :’(‘\;:‘:\

RI (;IA.,I,{:NI(N
RECURSION
RECURSION
RECURSION

RECURSION

Here we o again

RECURSION

Here we go again

RECURSION

Here we go again

PP 2016/17 Unit 5 — Recursion 5/32

Basic Idea of Recursion

@ Basic idea of recursion is “Divide et Impera”
9 Divide a problem P into subproblems with the same structure, but smaller
(recursive case)
@ At some point, the subproblem is small enough to solve it (base case)
@ Once the subproblems are solved, they can be composed to solve P
(composition)
@ Many problems can be expressed very elegantly and naturally with recursion
To iterate is human, to recurse divine (Anonymous)

PP 2016/17 Unit 5 — Recursion 6/32

Iterative Sum Example

@ Let's convert a simple loop into recursion

@ We're going to stay with Ruby for a while
longer and write a function that computes

a sum: oo N oro
<
& e}
9 %
def sum(n) s %
total = 0 = g
. [=}
while(n '= 0) Z, &
" >
total += n ”'&,u §‘°®
< 5
n-=1 0 gno WO
end
return total
end

PP 2016/17 Unit 5 — Recursion 7/32

Explaining Recursion

@ The function from the previous slide in plain words:

@ You have n, set total to 0
@ If nis not 0 yet:

(a) Add n to total
(b) Decrement n by 1
(c) Repeat Step 2

© Done, return total

@ Explaining Step 2 in recursive fashion:
@ Ifnis not 0 yet, repeat this same step with

(a) total + n as new value for total
(b) n-1 as new value for n

PP 2016/17 Unit 5 — Recursion 8/32

Recursive Sum Example/1

@ How would this look like in Ruby?

def sum(n,total)
ifn!'=0
sum(n-1,total+n)
end
end

@ Something is still missing . ..

A fatal error ha

=)

PP 2016/17 Unit 5 — Recursion 9/32

Recursive Sum Example/1

@ How would this look like in Ruby?

def sum(n,total)

ifn =0
sum(n-1,total+n)
end
end
@ Something is still missing ... when and how do we stop?

A fatal error ha

=)

PP 2016/17 Unit 5 — Recursion 10/32

Recursive Sum Example/2

@ When n has reached 0, we return total:

def sum(n,total)
if n!=0
sum(n-1,total+n)
else
return total
end
end

@ This isn't exactly the same as the iterative version

PP 2016/17 Unit 5 — Recursion 11/32

Recursive Sum Example/3

@ To obtain the same signature as in the iterative version, we need a second
function that initializes total = 0

@ Be careful that this cannot be done in the recursive function!

def do_sum(n)
sum(n,0)
end

def sum(n,total)
if n!=0
sum(n-1,total+n)
else
return total
end
end

PP 2016/17 Unit 5 — Recursion 12/32

Tail Recursion

@ A very important sub-class of recursive functions are tail recursive functions
@ This means, there is nothing left to do when the recursive call returns
@ The example on the previous slide is tail recursive

@ Why are these functions so important?

PP 2016/17 Unit 5 — Recursion 13/32

Recursion

Execution of Tail-Recursive Function

Recursive call n total 1= 0
sum(3,0) 3 0 yes
sum(2,3) 2 3 yes
sum(1,5) 1 5 yes
sum(0,6) O 6 no
— 6
— 6
— 6
— 6

PP 2016/17

Unit 5 — Recursion

def sum(n,total)
if n !'=0
sum(n-1,total+n)
else
return total
end
end

14/32

Non-Tail Recursion

@ We implemented sum as a tail recursive function

@ It could have also been implemented in a non-tail recursive way:

def sum(n)
ifn!'=0
sum(n-1) + n
else
return O
end
end

@ After returning from the recursive call we still have to add n

PP 2016/17 Unit 5 — Recursion 15/32

Execution of Non-Tail-Recursive Function

def sum(n)
if n 1= 0
Recursive call n n!=0 sum(n-1) + n
sum(3) 3 yes else
sum(2) + 3 9 yes endreturn 0
sum(1) + 2 1 yes end
sum(0) + 1 0 no
— 0+ 1
— 1
— 1+ 2
—+ 3
— 3+ 3
— 6

— 6

PP 2016/17 Unit 5 — Recursion 16/32

Tail Recursion vs. Non-Tail Recursion

@ In general, (non-tail) recursive function calls put parameters on the stack

@ Every call grows the stack
@ On return, the parameters are needed to compute the result (together with
the partial result returned)

@ In tail recursive functions, the parameters from the call before are not
needed anymore

@ Instead, the result is directly handed to the parent
@ Hence, no parameters need to be put on the stack

@ Languages that use tail recursion optimization realize this and don't grow
the stack

@ The languages we cover next are optimized in this way
@ So they are much more efficient when using recursion

PP 2016/17 Unit 5 — Recursion 17/32

Efficiency of Recursion

@ So we always use tail recursion and everything is fine?

@ Unfortunately, it is not that simple:

@ Not every recursive function can be formulated in a tail recursive way

@ Non-tail recursive functions are usually easier to write: they store everything
on the stack

@ Tail recursive functions have to track information in accumulator
parameters, e.g. total in the sum function

@ If a recursive function “loops” forever, it has to be tail recursive for obvious
reasons

PP 2016/17 Unit 5 — Recursion 18/32

)
QOutline

9 Writing Recursive Functions

PP 2016/17 Unit 5 — Recursion 19/32

Writing Recursive Functions

Writing Recursive Functions

@ If you have no experience with recursive functions, writing them may seem
difficult, but there are a few tricks

@ Let's have a look at a concrete example: reversing an array

@ First of all, it helps to look at examples

(]

(1]
[1,2]
[1,2,3]

@ This will help you get a “feel” for the problem
@ You may even be able to recognize some pattern

PP 2016/17

->
->
->
->

(]

(1]
[2,1]
[3,2,1]

Unit 5 — Recursion

20/32

Writing Recursive Functions

Base Cases

@ Next, try to figure out the base cases

@ These are the cases that don't need a recursive call

def rev(a)

if a.length == 0 or a.length ==

return a
else
puts "not implemented yet"
end
end

You can already test this function by calling it with different parameters

rev([]) ->
rev([1]) ->
rev([’abc’]) ->
rev([1,2,3]) ->
rev([[1,2,3]1]) ->

PP 2016/17

(]

(1]

["abc"]

not implemented yet
[[1,2,3]]

Unit 5 — Recursion 21/32

Recursive Cases/1

@ Now, you have to consider the recursive case, which is a bit more difficult
@ What do we have?

@ We know there are at least two elements in the array (and possibly some
rest)
9 We have to add a recursive call to rev somewhere

@ Why not imagine you already have a working version?

@ Summing up, we have

o first two elements: a[0] and a[1]
9 the rest: a.drop(2)

drop(n) drops the first n elements, here 2)
@ a working function: old_rev

PP 2016/17 Unit 5 — Recursion 22/32

Recursive Cases/2

@ How do we put this together?

def rev(a)
if a.length == 0 or a.length ==
return a
else
old_rev(a.drop(2)) .push(al1]) .push(al[0])
end
end

@ Basically, we reverse the rest of the array ...

@ ... and append the first two elements in reverse order

PP 2016/17 Unit 5 — Recursion 23/32

Recursive Cases/3

@ This should work now
@ But if it works, then it is as good as old_rev
@ So you can replace old_rev with a recursive call rev and you're done!

def rev(a)
if a.length == 0 or a.length ==

return a
else

rev(a.drop(2)) .push(al[1]) .push(al[0])
end

end
@ Well, we're not quite done yet ...

@ We have to check that the recursion stops
@ We may be able to simplify the function

PP 2016/17 Unit 5 — Recursion 24/32

Termination/1

@ Termination is crucial in recursive functions

@ For simple functions it may be easy to see it won't get stuck in an endless
loop

@ For more complicated ones, you can check that its arguments are
monotonically decreasing/increasing

@ and will eventually reach one of your base cases

PP 2016/17 Unit 5 — Recursion 25/32

Termination /2

@ The function rev terminates

o We keep dropping items from the array, making it smaller and smaller
o Eventually it will contain only one or no item, i.e., base case

@ However, checking the function sum we have overlooked a case
@ What happens if we call it with a negative number?

A CAUTION
EPIC
FAILURE

PP 2016/17 Unit 5 — Recursion 26/32

Termination of the Sum Function

@ To make the sum function always terminate, we have to check for negative
numbers

@ Let's change the condition to n > 0

def sum(n,total)

ifn>0
sum(n-1,total+n)
else
return total
end
end

@ Alternatively, we could check for negative numbers in the initialization
function do_sum

def do_sum(n)
sum(n,0) if n > O
0

end

PP 2016/17 Unit 5 — Recursion 27/32

Writing Recursive Functions

Simplification/1

@ If you have multiple base cases, check if you actually need all of them
@ If we can handle empty arrays, do we need arrays with one element as a

base case?

The case with one element can be rewritten into:
[1] -> rev([]).push(1)

@ So we only need the empty array as base case

?

PP 2016/17 Unit 5 — Recursion 28/32

Simplification /2
@ The simplified function looks like this:
def rev(a)
return a if a == []

rev(a.drop(1)) .push(al0])
end

@ Was not that difficult, was it?

No, it's not dificult at all.

PP 2016/17 Unit 5 — Recursion 290/32

Just One More Flaw/1

@ We now have a recursive function that reverses an array
@ However, it is not tail recursive
o We append an element to the return value

@ Can you make it tail recursive?

PP 2016/17 Unit 5 — Recursion 30/32

Just One More Flaw/2

@ We need a second parameter, which keeps the reversed array

def rev(a,b)
return b if a == []
rev(a.drop(1), [a[0]] + b)
end

PP 2016/17 Unit 5 — Recursion 31/32

-
Summary

(4

Recursion is just a different kind of loop, but as expressive as loops

(2

Some programming languages are haevily based on recursion, others do not
offer recursion at all
@ Three important steps in writing recursive programs

9 Base cases
@ Recursive cases
@ Termination

(2

Often recursion allows you to write elegant code

(4

With the right language, it is even efficient

(2

Tail recursion is important to make recursive programs efficient

@ They essentialy don't need to store any data on the stack

PP 2016/17 Unit 5 — Recursion 32/32

	Recursion
	Writing Recursive Functions

