
Programming Paradigms
Unit 4 — Ruby Advanced

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2016/17 Unit 4 – Ruby Advanced 1/42

Outline

1 Functions, Code Blocks and Procs

2 Classes

3 Modules and Mixins

PP 2016/17 Unit 4 – Ruby Advanced 2/42

Functions, Code Blocks and Procs

Outline

1 Functions, Code Blocks and Procs

2 Classes

3 Modules and Mixins

PP 2016/17 Unit 4 – Ruby Advanced 3/42

Functions, Code Blocks and Procs

Defining Functions

Functions are used to bundle one or more statements into a single unit

They can be defined in the console, and without defining a class first

Functions are also referred to as methods

>> def tell the truth

>> true

>> end

=> nil

>> tell the truth

=> true

Every function returns something: if no explicit return expr1, expr2, . . .
statement is used, the value of the last processed expression is returned

More than one values are returned in an array

Like everything else, functions in Ruby are considered objects

You can call tell the truth.class or tell the truth.methods

PP 2016/17 Unit 4 – Ruby Advanced 4/42

Functions, Code Blocks and Procs

Positional Parameters to Functions

Functions accept parameters

The default are positional parameters, i.e., the order of the parameters
matters

>> def method name (var1, var2)

>> expr..

>> end

You can set default values for the parameters, which will be used if method
is called without passing parameters

>> def method name (var1=value1, var2=value2)

>> expr ...

>> end

Function call

>> method name param1, param2

PP 2016/17 Unit 4 – Ruby Advanced 5/42

Functions, Code Blocks and Procs

Positional Parameters to Functions: Example

Function with two parameters that are initialized

>> def test(a1=’Ruby’, a2=’Perl’)

>> puts "The programming language is #{a1}"
>> puts "The programming language is #{a2}"
>> end

Call function with two parameters

>> test ’C’, ’C++’

>> The programming language is C

>> The programming language is C++

=> nil

Call function with one parameter (which is the first one)

>> test ’C’

>> The programming language is C

>> The programming language is Perl

=> nil

PP 2016/17 Unit 4 – Ruby Advanced 6/42

Functions, Code Blocks and Procs

Named Parameters to Functions

Before Ruby 2.0, there was no support for named parameters, which are
specified/referred to by a name in the function call

For example, in Objective-C a function call can look like this:

[window addNew:@"Title"

xPosition:20

yPosition:50

width:100

height:50

drawingNow:YES];

Named parameters simplify, e.g.,

the handling of optional parameters
the parameters can be passed in any order

PP 2016/17 Unit 4 – Ruby Advanced 7/42

Functions, Code Blocks and Procs

Named Parameters Using Hashes

A single hash can be used to emulate named parameters (only way before
Ruby 2.0)

>> def tell the truth(options = {})
>> case options[:profession]

>> when :lawyer

>> ’almost certainly not false’

>> when :doctor

>> true

>> else

>> ’yep’

>> end

>> end

>> tell the truth(:profession => :lawyer)

=> "almost certainly not false"

>> tell the truth

=> "yep"

PP 2016/17 Unit 4 – Ruby Advanced 8/42

Functions, Code Blocks and Procs

Named Parameters as Keyword Arguments

Ruby 2.0 introduced keyword arguments, which are named parameters

They are followed by a colon (:) and an optional default value

When calling a method, the order of the arguments can be in any order
without affecting the behavior (not the case for positional arguments)

Parameters that are not initialized have to be specified

>> def total(subtotal:, tax:10, discount:5)

>> subtotal + tax - discount

>> end

>> total(subtotal:100)

=> 105

>> total(subtotal:100, discount:20)

=> 190

>> total(subtotal:100, discount:20)

=> 190

>> total()

ArgumentError: missing keyword: subtotal

PP 2016/17 Unit 4 – Ruby Advanced 9/42

Functions, Code Blocks and Procs

Code Blocks/1

A code block is basically a function without a name

It can be passed as a parameter to a function or method

It is delimited by

curly braces {...} (inline or single-line block) or
do...end (multi-line block)

>> 3.times { puts ’hello’ }
hello

hello

hello

=> 3

times is an iterator (method) for the class Fixnum that does something a
certain number of times

PP 2016/17 Unit 4 – Ruby Advanced 10/42

Functions, Code Blocks and Procs

Code Blocks/2

Let’s write our own version of times called log2times

x.log2times does something log2(x) times

class Fixnum

def log2times

i = self

while i > 1

i = i / 2

yield

end

end

end

>> 2.log2times { puts ’Hello world!’}
Hello world!

=> nil

>> 5.log2times { puts ’Hello world!’}
Hello world!

Hello world!

=> nil

self gives you access to the current object – the object that is receiving
the current message

yield in the method log2times calls the passed code block

Ruby has open classes: write an existing class definition, specify/define
something and it will be added to the class

The code extends the class Fixnum by adding a method log2times

PP 2016/17 Unit 4 – Ruby Advanced 11/42

Functions, Code Blocks and Procs

Parameters to Code Blocks

It is also possible to pass parameters to the code block

In the block, a variable is placed in vertical lines || to accept parameters

>> (0..3).each { |x| puts x }
0

1

2

3

=> 0..3

Equivalent expression:

(0..3).each do |x|

puts x

end

|x| assumes the values 0 . . . 3

What is the result of the following expression?

>> [’2’, ’plus’, ’3’, ’is’, "#{2+3}"].each { |x| puts x }

PP 2016/17 Unit 4 – Ruby Advanced 12/42

Functions, Code Blocks and Procs

Procs/1

Code blocks are not first-class citizens of Ruby

For example, you cannot assign them to a variable

>> y = { |x| puts x }
syntax error,...

If you want to do something other than yielding them, you have to convert
them to a Proc, which is a class in Ruby, and you can create objects of this
type

>> y = Proc.new { |x| puts x }
=> #<Proc:0xb7367ac4>

>> y.call(3)

3

=> nil

>> y.class

=> Proc

PP 2016/17 Unit 4 – Ruby Advanced 13/42

Functions, Code Blocks and Procs

Procs/2

Any code block can be turned into a Proc object if it is passed as a
parameter and the parameter is preceded by an ampersand

The code block (object) is then executed with the call method (similar to
yield)

This allows to pass around executible code

>> def call block(&block)

>> block.call

>> end

=> nil

>> def pass block(&block)

>> call block(&block)

>> end

=> nil

>> pass block { puts ’Hello block!’ }
Hello block!

=> nil

PP 2016/17 Unit 4 – Ruby Advanced 14/42

Classes

Outline

1 Functions, Code Blocks and Procs

2 Classes

3 Modules and Mixins

PP 2016/17 Unit 4 – Ruby Advanced 15/42

Classes

Class Hierarchy

Ruby supports single inheritance, creating a hierarchy of classes

The methods class and superclass can be used to obtain, respectively,
the class of an object and the parent of a class

>> 4.class

=> Fixnum

>> Fixnum.superclass

=> Integer

>> Integer.superclass

=> Numeric

>> Numeric.superclass

=> Object

>> Object.superclass

=> nil

PP 2016/17 Unit 4 – Ruby Advanced 16/42

Classes

Ruby Metamodel

As in Ruby everything is an object, classes are themselves instances of the
class Class

>> 4.class.class

=> Class

>> 4.class.superclass

=> Integer

>> Numeric.superclass

=> Object

>> 4.class.superclass.superclass.class

=> Class

PP 2016/17 Unit 4 – Ruby Advanced 17/42

Classes

Defining a Class/1

A class is made up of a collection of

variables representing the internal state and
methods providing behaviours that operate on that state

Class names must begin with a capital letter

By convention, names that contain more than one word are run together
with each word capitalized, e.g., CamelCase

Let’s start building a class Customer

>> class Customer

>> end

=> nil

This is the simplest possible class: an empty class (doing nothing)

PP 2016/17 Unit 4 – Ruby Advanced 18/42

Classes

Defining a Class/2

Initializing the class and creating variables

>> class Customer

>> @@no of customers=0

>> def initialize(name, addr)

>> @name=name

>> @addr=addr

>> @@no of customers = @@no of customers + 1

>> end

>> end

Class variables are prepended with @@

Belong to the class and have one value per class

Instance variables are prepended with @

Belong to the instances/objects and have different values for each instance
Need not to be declared, but are dynamically appended to an object when
they are first assigned

The initialize method is executed when a new object is created

PP 2016/17 Unit 4 – Ruby Advanced 19/42

Classes

Accessor Methods for a Class/1

By default, variables are private
and can only be directly accessed
within an instance method

To provide access from outside,
accessor methods are needed

Accessor methods can have the
same name as variables

... and ’addr=’ is a valid
method name
When you use them, it looks like
you are accessing directly the
variables

>> class Customer

>> def set name(name)

>> @name = name

>> end

>> def get name

>> return @name

>> end

>> def addr=(addr)

>> @addr = addr

>> end

>> def addr

>> return @addr

>> end

>> def get no of customers

>> return @@no of customers

>> end

>> end

PP 2016/17 Unit 4 – Ruby Advanced 20/42

Classes

Accessor Methods for a Class/2

Now we can use our class

>> c1 = Customer.new(’max’, ’meran’)

=> #<Customer:0x0000000084fd00 @name="max", @addr="meran">

>> c2 = Customer.new(’moritz’, ’meran’)

=> #<Customer:0x000000008cc4b8 @name="moritz", @addr="meran">

>> c1.addr

=> "meran"

>> c1.addr=’bozen’

=> "bozen"

>> c1.addr

=> "bozen"

>> c1.get no of customers

=> 2

PP 2016/17 Unit 4 – Ruby Advanced 21/42

Classes

Accessor Methods for a Class/3

Since getters and setters are so common, they can be autogenerated

>> class Customer

>> @@no of customers=0

>> attr accessor :name, :addr

>> end

attr accessor is a method, which is run when Ruby constructs the class
object, and it generates the setter and getter methods for you

addr=(addr), addr, name=(name), and name

If instead attr :name, :addr is used, only the getter methods are created

PP 2016/17 Unit 4 – Ruby Advanced 22/42

Classes

Example Tree Class

Let’s build a class Tree, which allows to create a tree and to traverse it

class Tree

attr accessor :children, :node name

def initialize(name, children=[])

@node name = name

@children = children

end

def traverse(&block)

process &block

children.each {|c| c.traverse &block}
end

def process(&block)

block.call self

end

end

PP 2016/17 Unit 4 – Ruby Advanced 23/42

Classes

Using the Tree Class

Let’s create a tree with root node ’Ruby’ and children ’Reia’ and ’MacRuby’

rubytree = Tree.new(’Ruby’,

[Tree.new(’Reia’),Tree.new(’MacRuby’)])

Processing the root node by outputting its name

rubytree.process {|node| puts node.node name}
Ruby

Traversing the whole tree (printing each node name)

rubytree.traverse {|node| puts node.node name}
Ruby

Reia

MacRuby

PP 2016/17 Unit 4 – Ruby Advanced 24/42

Classes

Inheritance

If we want to create a red-black tree based on our Tree class, we need to
add a color and a method for balancing the tree

class RedBlackTree < Tree

attr accessor :color

def initialize(name, color, children=[])

super(name, children)

@color = color

end

def balance()

...

end

end

< creates a subclass of an existing class

super calls the initialize method of the superclass Tree

In Ruby, a class can only inherit from a single other class
PP 2016/17 Unit 4 – Ruby Advanced 25/42

Modules and Mixins

Outline

1 Functions, Code Blocks and Procs

2 Classes

3 Modules and Mixins

PP 2016/17 Unit 4 – Ruby Advanced 26/42

Modules and Mixins

Modules/1

A module is a collection of (related) classes, methods/functions and
constants

module Identifier

statement1

statement2

...........

end

A module comes together with its own namespace (to avoid name clashes)

Similar to classes, but

there are no instances (objects) of modules
there is no inheritance

PP 2016/17 Unit 4 – Ruby Advanced 27/42

Modules and Mixins

Modules/2

An example is the Math module

>> module Math

>> PI = 3.141592654

>> def sqrt(v)

>> # ...

>> end

>> # ...

>> end

It defines various constants, e.g., PI, and functions, e.g., sqrt

Constants begin with an uppercase letter

PP 2016/17 Unit 4 – Ruby Advanced 28/42

Modules and Mixins

Using Modules

To use modules, you can use either qualified names

>> Math.sqrt(2)

=> 1.4142135623731

>> Math::PI

=> 3.14159265358979

or include the module

>> include Math

=> Object

>> sqrt(2)

=> 1.4142135623731

>> PI

=> 3.14159265358979

PP 2016/17 Unit 4 – Ruby Advanced 29/42

Modules and Mixins

Modules and Classes

Modules become really interesting when used in combination with classes

Ruby does not support multiple inheritance

However, it does support a mechanism called a mixin

If we include a module in a class definition, the module’s methods are
appended to the class

Effectively, the module is “mixed in” with the class

PP 2016/17 Unit 4 – Ruby Advanced 30/42

Modules and Mixins

Mixins/1

Unfortunately, it is not that easy to create a mixin

In order to use the full power of a module in a class, your class may need to
implement certain methods

Let’s try to get the tree node names sorted in alphabetical order

We’ll try to do this mixing the module Enumerable into our class

Enumerable provides a method called sort

PP 2016/17 Unit 4 – Ruby Advanced 31/42

Modules and Mixins

Mixins/2

Just including the module Enumerable in our Tree class won’t give us the
full functionality:

>> class Tree

>> include Enumerable

>> attr accessor :children, :node name

>> ...

>> end

=> nil

>> ruby tree = Tree.new(...)

=> ...

>> ruby tree.sort

NoMethodError: undefined method ‘each’ for ...

A class wanting to be enumerable must implement the method each to
go through all elements

In our Tree class, the method needs to go through all nodes

PP 2016/17 Unit 4 – Ruby Advanced 32/42

Modules and Mixins

Mixins/3

Let’s add the method each, which needs an object and a code block as
parameter

>> class Tree

>> include Enumerable

>> attr accessor :children, :node name

>> ...

>> def each(&block)

>> block.call self

>> children.each {|c| c.each &block}
>> end

>> end

>> ruby tree.sort

NoMethodError: undefined method ‘<=>’ for ...

We are missing yet another operator

PP 2016/17 Unit 4 – Ruby Advanced 33/42

Modules and Mixins

Mixins/4

A class wanting to be comparable must implement the “spaceship
operator” ’<=>’

This operator is used for comparing two objects:

a <=> b =







−1 if a < b

1 if a > b

0 if a = b

Let’s add this operator to our Tree class

PP 2016/17 Unit 4 – Ruby Advanced 34/42

Modules and Mixins

Mixins/5

class Tree

...

def <=>(t)

return -1 if self.node name < t.node name

return 1 if self.node name > t.node name

return 0 if self.node name == t.node name

return nil

end

end

>> ruby tree.sort

=> [#<Tree:0xb73bfa6c @node name="McRuby",...

The output doesn’t look very nice, sort returns an array of trees

PP 2016/17 Unit 4 – Ruby Advanced 35/42

Modules and Mixins

Success!

However, an array supports the method each as well

So we can pass a code block to the array, printing the names of the nodes:

>> (ruby tree.sort).each {|n| puts n.node name}
McRuby

Reia

Ruby

This small example already hints at the flexibility provided by modules,
mixins, and code blocks

PP 2016/17 Unit 4 – Ruby Advanced 36/42

Modules and Mixins

Success?

Well, looking at the code for our Tree class you’ll notice that some of the
code is redundant

Now that we’ve implemented the each method, we don’t need the
traverse method anymore (which does essentially the same thing)

So we can refactor the code to make it slimmer and better

PP 2016/17 Unit 4 – Ruby Advanced 37/42

Modules and Mixins

Final Tree Class

class Tree

include Enumerable

attr accessor :children, :node name

def initialize(name, children=[])

@children = children

@node name = name

end

def each(&block)

block.call self

children.each {|c| c.each &block}
end

def <=>(tree)

...

end

end

PP 2016/17 Unit 4 – Ruby Advanced 38/42

Modules and Mixins

Example Insertion Sort/1

Insertion sort iterates through a list of data, consuming one input element
each repetition, and growing a sorted output list

In each iteration, it removes one element from the input data, finds the
correct position in the sorted output list, and inserts it there

Sorting is typically done in-place, by iterating through the input array from
the beginning, and growing the sorted list behind it

In the array after k iterations the first k + 1 entries are sorted

If the current element is x

it becomes after this iteration

PP 2016/17 Unit 4 – Ruby Advanced 39/42

Modules and Mixins

Example Insertion Sort/2

Insertion sort in Java

class InsertionSort{

static void sort(int[] a){
for (int i = 1; i < a.length; i++){

int val = a[i];

int j = i-1;

while (j >= 0 && a[j] > val){
a[j+1] = a[j];

j--;

}
a[j+1] = val;

}
}

public static void main(String[] args){
int[] a = {2,43,24,100,3};
sort(a);

for (int e : a)

System.out.println(e);

}
}

PP 2016/17 Unit 4 – Ruby Advanced 40/42

Modules and Mixins

Example Insertion Sort/3

Insertion sort in Ruby

def insertionsort(a)

a.each index do |i|

val = a[i]

j = i - 1

while j >= 0 and a[j] > val

a[j+1], a[j] = a[j], a[j+1]

j -= 1

end

end

end

a = [2,43,24,100,3]

insertionsort(a)

puts a

PP 2016/17 Unit 4 – Ruby Advanced 41/42

Summary

Strengths of Ruby

Ruby is a pure object-oriented language, treating objects in a consistent way
Ruby is a strongly typed language, but applies dynamic type checking
Supports Duck typing, and is therefore very flexible when it comes to
substitutability
Some nice features not present in other languages: rich methods on arrays,
code blocks, modules and mixins
Programmers can be very productive using Ruby, can be used like a
scripting language
Comes with a very successful web development framework: Ruby on Rails

The original Twitter implementation was done in Ruby

Weaknesses of Ruby
Performance: Ruby is not the most efficient language

All the flexibility makes it difficult to compile programs

Concurrent programming is difficult to do with a state-based language
Type Safety: duck typing makes it harder to debug code that has type errors
in it

PP 2016/17 Unit 4 – Ruby Advanced 42/42

	Functions, Code Blocks and Procs
	Classes
	Modules and Mixins

