Programming Paradigms
Unit 4 — Ruby Advanced
J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

PP 2016/17 Unit 4 — Ruby Advanced 1/42

I
QOutline

© Functions, Code Blocks and Procs

© Classes

© Modules and Mixins

PP 2016/17 Unit 4 — Ruby Advanced 2/42

)
QOutline

© Functions, Code Blocks and Procs

PP 2016/17 Unit 4 — Ruby Advanced 3/42

Defining Functions

@ Functions are used to bundle one or more statements into a single unit
@ They can be defined in the console, and without defining a class first

@ Functions are also referred to as methods

>> def tell_the_truth
>> true

>> end

=> nil

>> tell_the_truth

=> true

@ Every function returns something: if no explicit return exprl, expr2, ...
statement is used, the value of the last processed expression is returned

@ More than one values are returned in an array
@ Like everything else, functions in Ruby are considered objects
@ You can call tell_the_truth.class or tell_the_truth.methods

PP 2016/17 Unit 4 — Ruby Advanced 4/42

Positional Parameters to Functions

@ Functions accept parameters

@ The default are positional parameters, i.e., the order of the parameters
matters

>> def method_name (wvarl, wvar2)
>> expr. .
>> end

@ You can set default values for the parameters, which will be used if method
is called without passing parameters

>> def method_name (varl=valuel, var2=valuel)
>> expr . ..
>> end

@ Function call

>> method_name paraml, param2

PP 2016/17 Unit 4 — Ruby Advanced 5/42

Positional Parameters to Functions: Example

@ Function with two parameters that are initialized

>> def test(al=’Ruby’, a2=’Perl’)

>> puts "The programming language is #{al}"
>> puts "The programming language is #{a2}"
>> end

@ Call function with two parameters

>> test ’C’, ’C++’

>> The programming language is C
>> The programming language is C++
=> nil

@ Call function with one parameter (which is the first one)
>> test ’'C’
>> The programming language is C

>> The programming language is Perl
=> nil

PP 2016/17 Unit 4 — Ruby Advanced 6/42

Named Parameters to Functions

@ Before Ruby 2.0, there was no support for named parameters, which are
specified /referred to by a name in the function call

@ For example, in Objective-C a function call can look like this:

[window addNew:@"Title"
xPosition:20
yPosition:50
width:100
height:50
drawingNow:YES] ;

@ Named parameters simplify, e.g.,

o the handling of optional parameters
9 the parameters can be passed in any order

PP 2016/17 Unit 4 — Ruby Advanced 7/42

Named Parameters Using Hashes

@ A single hash can be used to emulate named parameters (only way before

Ruby 2.0)

>> def tell the truth(options = {})
>> case options[:profession]

>> when :lawyer

>> ’almost certainly not false’
>> when :doctor

>> true

>> else

>> ’yep’

>> end

>> end

>> tell_the_truth(:profession => :lawyer)
=> "almost certainly not false"

>> tell_the_truth

=> llyep n

PP 2016/17 Unit 4 — Ruby Advanced 8/42

Named Parameters as Keyword Arguments

@ Ruby 2.0 introduced keyword arguments, which are named parameters

@ They are followed by a colon (:) and an optional default value

@ When calling a method, the order of the arguments can be in any order
without affecting the behavior (not the case for positional arguments)

@ Parameters that are not initialized have to be specified

>>
>>
>>

>>

def total(subtotal:, tax:10, discount:5)
subtotal + tax - discount
end

total (subtotal:100)
105

total (subtotal:100, discount:20)
190

total (subtotal:100, discount:20)
190

total()

ArgumentError: missing keyword: subtotal

PP 2016/17

Unit 4 — Ruby Advanced 9/42

Code Blocks/1

@ A code block is basically a function without a name
@ It can be passed as a parameter to a function or method

@ It is delimited by

@ curly braces {...} (inline or single-line block) or
9 do...end (multi-line block)

>> 3.times { puts ’hello’ }
hello
hello
hello
=> 3

@ times is an iterator (method) for the class Fixnum that does something a
certain number of times

PP 2016/17 Unit 4 — Ruby Advanced 10/42

Code Blocks/2

® Let's write our own version of times called log2times

@ x.log2times does something log,(x) times

class Fixnum >> 2.log2times { puts ’Hello world!’}
def log2times Hello world!
i = self => nil
wh11e=1i>/12 >> 5.log2times { puts ’Hello world!’}
yield Hello world!
Hello world!
end => nil
end
end

@ self gives you access to the current object — the object that is receiving
the current message
@ yield in the method log2times calls the passed code block

@ Ruby has open classes: write an existing class definition, specify/define
something and it will be added to the class
9 The code extends the class Fixnum by adding a method log2times

PP 2016/17 Unit 4 — Ruby Advanced 11/42

Parameters to Code Blocks

@ It is also possible to pass parameters to the code block

@ In the block, a variable is placed in vertical lines | | to accept parameters

>> (0..3).each { Ix| puts x } Equivalent expression:

(0..3).each do |xl|
puts x
end

I W N = O

> 0..3
® |x| assumes the values 0 ...3
@ What is the result of the following expression?

>> [’2?, ’plus’, ’3’, ’is’, "#{2+3}"].each { Ix| puts x }

PP 2016/17 Unit 4 — Ruby Advanced 12/42

Procs/1

@ Code blocks are not first-class citizens of Ruby

@ For example, you cannot assign them to a variable

>>y ={ |x| puts x }
syntax error,...

@ If you want to do something other than yielding them, you have to convert
them to a Proc, which is a class in Ruby, and you can create objects of this
type
>> y = Proc.new { |x| puts x }
=> #<Proc:0xb7367ac4>

>> y.call(3)
3
=> nil

>> y.class
=> Proc

PP 2016/17 Unit 4 — Ruby Advanced 13/42

Procs/2

@ Any code block can be turned into a Proc object if it is passed as a
parameter and the parameter is preceded by an ampersand

@ The code block (object) is then executed with the call method (similar to
yield)

@ This allows to pass around executible code

>>
>>
>>
=>

>>
>>
>>
=>

>>

def call_block(&block)
block.call

end

nil

def pass_block(&block)
call_block(&block)

end

nil

pass_block { puts ’Hello block!’ }

Hello block!

=>

PP 2016/17

nil

Unit 4 — Ruby Advanced 14/42

QOutline

© Classes

PP 2016/17 Unit 4 — Ruby Advanced 15/42

Class Hierarchy

@ Ruby supports single inheritance, creating a hierarchy of classes

@ The methods class and superclass can be used to obtain, respectively,
the class of an object and the parent of a class

>> 4.class
=> Fixnum

>> Fixnum.superclass
=> Integer

>> Integer.superclass
=> Numeric

>> Numeric.superclass
=> Object

>> Object.superclass
=> nil

PP 2016/17 Unit 4 — Ruby Advanced 16/42

Ruby Metamodel

@ As in Ruby everything is an object, classes are themselves instances of the

class Class

>> 4.class.class
=> (Class

>> 4.class.superclass
=> Integer

>> Numeric.superclass
=> Object

>> 4.class.superclass.superclass.class
=> Class

PP 2016/17 Unit 4 — Ruby Advanced

Object

‘ Key ‘

\
Module

|

‘ Class

Numeric

Integer

-

< Class

Fixnum

o,

17/42

Defining a Class/1

@ A class is made up of a collection of

@ variables representing the internal state and
@ methods providing behaviours that operate on that state

@ Class names must begin with a capital letter

@ By convention, names that contain more than one word are run together
with each word capitalized, e.g., CamelCase

@ Let’'s start building a class Customer

>> class Customer
>> end
=> nil

@ This is the simplest possible class: an empty class (doing nothing)

PP 2016/17 Unit 4 — Ruby Advanced 18/42

Defining a Class/2

@ Initializing the class and creating variables

>> class Customer

>> @O@no_of _customers=0

>> def initialize(name, addr)

>> O@name=name

>> @addr=addr

>> @0no_of _customers = @0no_of _customers + 1
>> end

>> end

@ Class variables are prepended with @@
@ Belong to the class and have one value per class
@ Instance variables are prepended with @
@ Belong to the instances/objects and have different values for each instance
@ Need not to be declared, but are dynamically appended to an object when
they are first assigned
@ The initialize method is executed when a new object is created

PP 2016/17 Unit 4 — Ruby Advanced 19/42

Accessor Methods for a Class/1

>> class Customer

>> def set_name(name)
@ By default, variables are private >> Cname = name
. >>
and can only be directly accessed end
within an instance method >> def get_name
. . >> return Oname
@ To provide access from outside, o> ond
accessor methods are needed X ,
>> def addr=(addr
)
Accessorrnethods_can have the S>> PRy
same name as variables
>> end

9 ... and ’addr=’ is a valid

method name >> def addr

o When you use them, it looks like >~ return Caddr
you are accessing directly the >> end
variables >> def get_no_of_customers
>> return Q@no_of_customers
>> end
>> end

PP 2016/17 Unit 4 — Ruby Advanced 20/42

Accessor Methods for a Class/2

@ Now we can use our class

>> ¢l = Customer.new(’max’, ’meran’)
=> #<Customer:0x0000000084fd00 @name="max", ©@addr="meran">

>> ¢2 = Customer.new(’moritz’, ’meran’)
=> #<Customer:0x000000008cc4b8 @name="moritz", @addr="meran">

>> cl.addr
=> "meran"

>> cl.addr=’bozen’

=> "bozen"
>> cl.addr
=> "bozen"

>> cl.get no_of_customers
=> 2

PP 2016/17 Unit 4 — Ruby Advanced 21/42

Accessor Methods for a Class/3

@ Since getters and setters are so common, they can be autogenerated

>> class Customer

>> @@no_of_customers=0
>> attr_accessor :name, :addr
>> end

@ attr_accessor is a method, which is run when Ruby constructs the class
object, and it generates the setter and getter methods for you

9 addr=(addr), addr, name=(name), and name

@ If instead attr :name, :addr is used, only the getter methods are created

PP 2016/17 Unit 4 — Ruby Advanced 22/42

Example Tree Class

@ Let's build a class Tree, which allows to create a tree and to traverse it

class Tree
attr_accessor :children, :node_name

def initialize(name, children=[])
Onode_name = name
@children = children

end

def traverse(&block)

process &block

children.each {lc| c.traverse &block}
end

def process(&block)
block.call self
end
end

PP 2016/17 Unit 4 — Ruby Advanced

23/42

Using the Tree Class

@ Let's create a tree with root node 'Ruby’ and children 'Reia’ and '"MacRuby’

rubytree = Tree.new(’Ruby’,
[Tree.new(’Reia’),Tree.new(’MacRuby’)])

@ Processing the root node by outputting its name

rubytree.process {|node| puts node.node name}
Ruby

@ Traversing the whole tree (printing each node name)

rubytree.traverse {|node| puts node.node name}
Ruby

Reia

MacRuby

PP 2016/17 Unit 4 — Ruby Advanced 24/42

Inheritance

@ If we want to create a red-black tree based on our Tree class, we need to

add a color and a method for balancing the tree

class RedBlackTree < Tree
attr_accessor :color

def initialize(name, color, children=[])
super (name, children)
Q@color = color

end

def balance()

end
end

@ < creates a subclass of an existing class
9 super calls the initialize method of the superclass Tree
@ In Ruby, a class can only inherit from a single other class

PP 2016/17 Unit 4 — Ruby Advanced

25/42

QOutline

© Modules and Mixins

PP 2016/17 Unit 4 — Ruby Advanced 26/42

Modules/1

@ A module is a collection of (related) classes, methods/functions and
constants

module Identifier
statementl
statement?2

@ A module comes together with its own namespace (to avoid name clashes)

@ Similar to classes, but
@ there are no instances (objects) of modules
9 there is no inheritance

PP 2016/17 Unit 4 — Ruby Advanced 27/42

Modules/2

@ An example is the Math module

>> module Math
>> PI = 3.141592654

>> def sqrt(v)

>> #
>> end
>> #

>> end

@ It defines various constants, e.g., PI, and functions, e.g., sqrt
@ Constants begin with an uppercase letter

PP 2016/17 Unit 4 — Ruby Advanced 28/42

Using Modules

@ To use modules, you can use either qualified names

>> Math.sqrt(2)
=> 1.4142135623731

>> Math::PI
=> 3.14159265358979

@ or include the module

>> include Math
=> Object

>> sqrt(2)
=> 1.4142135623731

>> PI
=> 3.14159265358979

PP 2016/17 Unit 4 — Ruby Advanced

29/42

Modules and Classes

@ Modules become really interesting when used in combination with classes
@ Ruby does not support multiple inheritance

@ However, it does support a mechanism called a mixin

°

If we include a module in a class definition, the module’'s methods are
appended to the class

o Effectively, the module is “mixed in” with the class

PP 2016/17 Unit 4 — Ruby Advanced 30/42

Mixins/1

@ Unfortunately, it is not that easy to create a mixin
@ In order to use the full power of a module in a class, your class may need to
implement certain methods
@ Let's try to get the tree node names sorted in alphabetical order
@ We'll try to do this mixing the module Enumerable into our class
9 Enumerable provides a method called sort

PP 2016/17 Unit 4 — Ruby Advanced 31/42

Mixins /2

@ Just including the module Enumerable in our Tree class won't give us the
full functionality:

>> class Tree

>> include Enumerable

>> attr_accessor :children, :node_name
>> L.

>> end

=> nil

>> ruby_tree = Tree.new(...)
=>

>> ruby_tree.sort
NoMethodError: undefined method ‘each’ for

@ A class wanting to be enumerable must implement the method each to
go through all elements

@ In our Tree class, the method needs to go through all nodes

PP 2016/17 Unit 4 — Ruby Advanced 32/42

Mixins/3

@ Let's add the method each, which needs an object and a code block as

parameter

>> class Tree

>>
>>
>>
>>
>>
>>
>>

>> end

include Enumerable
attr_accessor :children, :node_name

def each(&block)

block.call self

children.each {lc| c.each &block}
end

>> ruby_tree.sort

NoMethodError: undefined method ‘<=>’ for ...

@ We are missing yet another operator

PP 2016/17

Unit 4 — Ruby Advanced

33/42

Mixins/4

@ A class wanting to be comparable must implement the “spaceship
operator” <=>’

@ This operator is used for comparing two objects:

-1 ifa<b
a<=>bh = 1 ifa>b
0 ifa=b

@ Let's add this operator to our Tree class

PP 2016/17 Unit 4 — Ruby Advanced 34/42

Mixins /5

class Tree

def <=>(t)
return -1 if self.node_name < t.node_name
return 1 if self.node_name > t.node_name
return 0 if self.node_name == t.node_name
return nil
end
end

>> ruby_tree.sort
=> [#<Tree:0xb73bfa6c @node_name="McRuby",...

@ The output doesn’t look very nice, sort returns an array of trees

PP 2016/17 Unit 4 — Ruby Advanced

35/42

Success!

@ However, an array supports the method each as well

@ So we can pass a code block to the array, printing the names of the nodes:

>> (ruby_tree.sort).each {|n| puts n.node name}
McRuby

Reia

Ruby

@ This small example already hints at the flexibility provided by modules,
mixins, and code blocks

PP 2016/17 Unit 4 — Ruby Advanced 36/42

Modules and Mixins

Success?

@ Well, looking at the code for our Tree class you'll notice that some of the
code is redundant

@ Now that we've implemented the each method, we don't need the
traverse method anymore (which does essentially the same thing)

@ So we can refactor the code to make it slimmer and better

PP 2016/17 Unit 4 — Ruby Advanced 37/42

Final Tree Class

class Tree
include Enumerable
attr_accessor :children, :node_name

def initialize(name, children=[])
@children = children
Onode_name = name

end

def each(&block)

block.call self

children.each {lc| c.each &block}
end

def <=>(tree)
end

end

PP 2016/17 Unit 4 — Ruby Advanced

38/42

Example Insertion Sort/1

@ Insertion sort iterates through a list of data, consuming one input element
each repetition, and growing a sorted output list

@ In each iteration, it removes one element from the input data, finds the
correct position in the sorted output list, and inserts it there

@ Sorting is typically done in-place, by iterating through the input array from
the beginning, and growing the sorted list behind it

@ In the array after k iterations the first k + 1 entries are sorted

@ If the current element is x

Sorted partial result Unsorted data

<x >x |xi

@ it becomes after this iteration

Sorted partial result Unsorted data

<X Ixi >x

PP 2016/17 Unit 4 — Ruby Advanced 39/42

Example Insertion Sort/2

@ Insertion sort in Java
class InsertionSort{

static void sort(int[] a){
for (int i = 1; i < a.length; i++){
int val = al[il;
int j = i-1;
while (j >= 0 && al[jl > val){
alj+1] = aljl;
i

al[j+1] = val;
}
}

public static void main(String[] args){
int[] a = {2,43,24,100,3};
sort(a);
for (int e : a)
System.out.println(e);
}
}

PP 2016/17 Unit 4 — Ruby Advanced 40/42

Modules and Mixins

Example Insertion Sort/3

@ Insertion sort in Ruby

def insertionsort(a)

a.each_index do |il
val = alil
j=i-1
while j >= 0 and a[j] > val
alj+11, aljl = aljl, alj+1]
jo-=1
end
end
end

a = [2,43,24,100,3]
insertionsort(a)
puts a

PP 2016/17 Unit 4 — Ruby Advanced 41/42

-
Summary

@ Strengths of Ruby

9
9
o

Ruby is a pure object-oriented language, treating objects in a consistent way
Ruby is a strongly typed language, but applies dynamic type checking
Supports Duck typing, and is therefore very flexible when it comes to
substitutability

Some nice features not present in other languages: rich methods on arrays,
code blocks, modules and mixins

Programmers can be very productive using Ruby, can be used like a
scripting language

Comes with a very successful web development framework: Ruby on Rails

@ The original Twitter implementation was done in Ruby

@ Weaknesses of Ruby

9

o
o

PP 2016/17

Performance: Ruby is not the most efficient language
@ All the flexibility makes it difficult to compile programs
Concurrent programming is difficult to do with a state-based language
Type Safety: duck typing makes it harder to debug code that has type errors
in it

Unit 4 — Ruby Advanced 42/42

	Functions, Code Blocks and Procs
	Classes
	Modules and Mixins

