
Programming Paradigms
Unit 3 — Ruby Basics

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2016/17 Unit 3 – Ruby Basics 1/38

Outline

1 Basics

2 Control Structures

3 Typing

4 Arrays and Hashes

PP 2016/17 Unit 3 – Ruby Basics 2/38

Basics

Outline

1 Basics

2 Control Structures

3 Typing

4 Arrays and Hashes

PP 2016/17 Unit 3 – Ruby Basics 3/38

Basics

Meet Ruby

It’s time to start programming: for the object-oriented part we are using
Ruby

Ruby was created by Yukihiro Matsumoto around 1993

It is an interpreted, object-oriented, dynamically typed language

Ruby optimizes the simplicity and the productivity of the programmers

The efficiency of the lanugage is less important

Official Web page: http://www.ruby-lang.org/en/

PP 2016/17 Unit 3 – Ruby Basics 4/38

Basics

Ruby Interpreter

In Linux, open a shell and type irb to start the interactive Ruby interpreter

rb(main):001:0>

The Ruby interpreter is now open and ready to execute interactively ruby
expressions read from stdin

An input expression is executed when it is syntactically completed (can be
one line or multiple lines)

>> "Hello World!"

=> "Hello World!"

Every evaluated expression returns a value

IRB tells us the result of the last evaluated expression

In the above expression, it returns simply the string "Hello World!"

Is this the world’s shortest ”Hello World” program?

PP 2016/17 Unit 3 – Ruby Basics 5/38

Basics

Hello World Program

Now lets look at the Hello World program in Ruby

>> puts "Hello World!"

Hello World!

=> nil

puts is the basic command to print something

The puts command always returns nil

Alternatively, you could also write: print "Hello Ruby!\n"

Compare this to Java:

import java.io.*;

public class Hello {
public static void main (String[] args) {

System.out.println ("Hello Ruby!\n");
}

}

PP 2016/17 Unit 3 – Ruby Basics 6/38

Basics

Ruby Source Files

Sometimes it is desirable to store Ruby programs in a (source) file

By convention, Ruby source files should have the extension .rb

Consider the following program stored in hello.rb

puts "Hello World!"

Can be executed in a (Linux) console using the Ruby interpreter:
ruby <filename>

Gets a script of statements to execute
Begins executing at the first line and continues to the last line

gamper@carbon: ruby hello.rb

Hello World!

gamper@carbon:

Alternatively, you can also load the file into irb: load <filename>

>> load ’hello.rb’

Hello World!

=> true

PP 2016/17 Unit 3 – Ruby Basics 7/38

Basics

Single-quoted Strings

There are (at least) two different types of strings

Simplest string literals are enclosed in single quotes

String is interpreted literally
The text within the quotes is the value of the string

>> language = ’Ruby’

=> "Ruby"

>> puts ’Hello #{language}!’
Hello #language!

=> nil

language is a local variable

Local variables start with a lowercase letter or ’ ’

= is the assignment operator (which returns the variable value)

Implicit declaration of local variable in first assignment

PP 2016/17 Unit 3 – Ruby Basics 8/38

Basics

Double-quoted Strings

Strings enclosed in double quotes

String is evaluated before it is returned
Supports expression substitution as a means of embedding the value of any
Ruby expression into a string using #{...}

>> language = ’Ruby’

=> "Ruby"

>> puts "Hello #{language}!"
Hello Ruby!

=> nil

>> puts "The sum is #{2 + 3}!"
The sum is 5

=> nil

PP 2016/17 Unit 3 – Ruby Basics 9/38

Basics

Strings with Other Delimiters

Strings can also be enclosed in a pair of matching though arbitrary
delimiter characters preceded by a %

e.g., !, (, {, etc.,
Supports expression substitution too

>> puts %{Ruby is fun.}
>> Ruby is fun.

=> nil

>> puts %(Ruby is fun.)

>> Ruby is fun.

=> nil

>> puts %<The sum is #{2 + 3}!>
The sum is 5

=> nil

. . . and there are even more ways to represent strings

PP 2016/17 Unit 3 – Ruby Basics 10/38

Basics

Comparisons

Ruby has the standard comparison (==, >=, !=, etc.) and Boolean (and,
or, not) operators

>> x = 4

=> 4

>> y = 3

=> 3

>> x == 4

=> true

>> x >= 4

=> true

>> (x == 4) and (y > 5)

=> false

>> (x != 3) or (not (y < 4))

=> true

PP 2016/17 Unit 3 – Ruby Basics 11/38

Basics

Object-Orientation

Ruby is a “pure” object-oriented language
Everything is an object, even numbers, strings and expressions are objects

class returns the class of an object
methods returns the methods of an object
object id returns the identfier of object

>> 4.class

=> Fixnum

>> 4.methods

=> ["%", "odd?", "inspect", "prec i", ...

>> 4.object id

=> 9

>> ’Hello World!’.class

=> String

>> (2 + 3).class

=> Fixnum

>> (3 < 4).class

=> TrueClass

PP 2016/17 Unit 3 – Ruby Basics 12/38

Control Structures

Outline

1 Basics

2 Control Structures

3 Typing

4 Arrays and Hashes

PP 2016/17 Unit 3 – Ruby Basics 13/38

Control Structures

Conditionals: if and unless/1

Ruby provides if and unless

Both come in two flavors
block:

if condition

statements

end

one-line: statement if condition

>> x = 4

=> 4

>> if x == 4

>> puts ’x is equal to 4’

>> end

x is equal to 4

=> nil

>> puts ’x is equal to 4’ if x == 4

x is equal to 4

=> nil

PP 2016/17 Unit 3 – Ruby Basics 14/38

Control Structures

Conditionals: if and unless/2

Even if not really needed, unless allows sometimes to express conditions
much better than with negation

>> y = 3

=> 3

>> unless y == 3

>> puts ’y is different from 3’

>> end

=> nil

>> puts ’y is different from 3’ unless y == 3

=> nil

PP 2016/17 Unit 3 – Ruby Basics 15/38

Control Structures

Conditionals: if and unless/3

The if and unless statements also support else branches

...

>> if x > 4

>> puts ’x is greater than 4’

>> else

>> puts ’x is less than 4’

>> end

x is less than 4

=> nil

...

>> unless y > 3

>> puts ’y is less than 3’

>> else

>> puts ’y is greater than 3’

>> end

y is greater than 3

=> nil

PP 2016/17 Unit 3 – Ruby Basics 16/38

Control Structures

Conditionals: case

Similar to other languages, Ruby provides a case-statement

case expr0

when expr1 [, expr2, ...]

stmt1

when expr3 [, expr4, ...]

...

[else

stmt3]

end

10..20 represents a
range of numbers

>> age = 5

=> 5

>> case age

>> when 0..2, 90..100

>> puts "baby or old man"

>> when 3..12

>> puts "child"

>> when 13..18

>> puts "youth"

>> else

>> puts "adult"

>> end

child

=> nil

PP 2016/17 Unit 3 – Ruby Basics 17/38

Control Structures

Loops

Ruby has two constructs for loops: while and until

>> z = 0

=> 0

>> while z < 10

>> z = z + 1

>> end

=> nil

>> z

=> 10

>> z = 0

=> 0

>> until z > 9

>> z = z + 1

>> end

=> nil

>> z

=> 10

One-line versions are also supported

z = z + 1 while z < 10

z = z + 1 until z > 9

PP 2016/17 Unit 3 – Ruby Basics 18/38

Typing

Outline

1 Basics

2 Control Structures

3 Typing

4 Arrays and Hashes

PP 2016/17 Unit 3 – Ruby Basics 19/38

Typing

A Strongly Typed Language

For the most part, Ruby is a strongly typed language

>> 4 + 4

=> 8

>> 4 + ’4’

TypeError: String can’t be coerced into Fixnum ...

>> 4 + 4.0

=> 8.0

PP 2016/17 Unit 3 – Ruby Basics 20/38

Typing

Dynamic Typing

Ruby definitely uses dynamic typing, i.e., type checking takes place when
the code is actually executed (not when it is defined)

Defining a function add four and four that adds a number and a string is
OK

>> def add four and four

>> 4 + ’four’

>> end

=> nil

Calling the function yields a runtime error

>> add four and four

TypeError: String can’t be coerced into Fixnum ...

PP 2016/17 Unit 3 – Ruby Basics 21/38

Typing

Substitutability

Ruby is very flexible when it comes to substitutability

>> a = [’100’, 100.0, 100, ’a’]

=> ["100", 100.0, 100, "a"]

Variable a is an array that stores a string, a float, and an integer

>> i = 0

=> 0

>> while i < 3

>> puts a[i].to i

>> i = i + 1

>> end

100

100

100

0

The method to i is applied to each element and performs a
conversion-to-integer function (gives 0 for "a")

PP 2016/17 Unit 3 – Ruby Basics 22/38

Typing

Duck Typing/1

What we have seen on the previous slide is called duck typing

Duck typing refers to the tendency of Ruby

to be less concerned with the class of an object
and more concerned with what methods can be called on it and what
operations can be performed on it

“If it walks like a duck and swims like

a duck and quacks like a duck, it is a

duck”

PP 2016/17 Unit 3 – Ruby Basics 23/38

Typing

Duck Typing/2

Duck typing allows a programmer to code to interfaces without a lot of
overhead, e.g.,

If an object has push() and pop() methods, you can treat it like a stack
If it does not, you cannot

Nevertheless, duck typing comes at a price

All the standard tools and techniques for statically typed languages won’t
work
You cannot catch as many errors automatically as with static typing, making
debugging more difficult

PP 2016/17 Unit 3 – Ruby Basics 24/38

Arrays and Hashes

Outline

1 Basics

2 Control Structures

3 Typing

4 Arrays and Hashes

PP 2016/17 Unit 3 – Ruby Basics 25/38

Arrays and Hashes

Arrays/1

Ruby arrays are ordered, integer-indexed collections of any object

Each element in an array is referred to by an index, starting with 0 for the
first element

>> animals = [’lions’, ’tigers’, ’bears’]

=> ["lions", "tigers", "bears"]

>> animals[0]

=> "lions"

>> animals[2]

=> "bears"

PP 2016/17 Unit 3 – Ruby Basics 26/38

Arrays and Hashes

Arrays/2

There are certain peculiarities about arrays in Ruby
You have already seen an array containing objects of many different types

Accessing elements beyond an array returns nil (not an error!)

>> animals[10]

=> nil

Elements can be referenced from the end of the array
Index -1 gives the last element

>> animals[-1]

=> "bears"

>> animals[-2]

=> "tigers"

Or a range of items can be selected

>> animals[0..1]

=> ["lions", "tigers"]

PP 2016/17 Unit 3 – Ruby Basics 27/38

Arrays and Hashes

Arrays/3

Before using a variable to hold an array, it has to be declared as one

>> a[0] = 0

NameError: undefined local variable ...

>> a = []

=> []

>> a[0] = 0

=> 0

There are also other ways to declare and create arrays

b = Array.new

=> []

c = Array.new(4)

=> [nil, nil, nil, nil]

c = Array.new(4,’Ruby’)

=> ["Ruby", "Ruby", "Ruby", "Ruby"]

PP 2016/17 Unit 3 – Ruby Basics 28/38

Arrays and Hashes

Arrays/4

Though we can specify the size of arrays when we create an array, there is
no need to do so

Ruby arrays grow automatically while adding elements to them

>> b[0] = ’a’

=> "a"

>> b[1] = ’b’

=> "b"

>> b[2] = ’c’

=> "c"

>> b

=> ["a", "b", "c"]

PP 2016/17 Unit 3 – Ruby Basics 29/38

Arrays and Hashes

Arrays/5

Arrays don’t have to be homogeneous, rather they can hold elements of
any type, even nested arrays

>> a = [’zero’, 1]

=> ["zero", 1]

>> a[2] = [’two’, ’things’]

=> ["two", "things"]

>> a

=> ["zero", 1, ["two", "things"]]

Multidimensional arrays are just arrays of arrays

>> a = [[1,2,3],[4,5,6],[7,8,9]]

=> [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>> a[1][2]

=> 6

PP 2016/17 Unit 3 – Ruby Basics 30/38

Arrays and Hashes

Ducktyping and Arrays

Arrays implement a very rich interface

>> [].methods

=> [:to s, :to a, :first, :last, :concat, :push, :pop

:shift, :unshift, :insert, :each, :length, :size, ...]

Arrays can be used as queues, linked lists, stacks, sets, etc.
Example: array as stack

>> a = [1]

=> [1]

>> a.push(3)

=> [1, 3]

>> a.pop

=> 3

>> a.pop

=> 1

>> a

=> []
PP 2016/17 Unit 3 – Ruby Basics 31/38

Arrays and Hashes

Iterating through Arrays

Any loop can be used to iterate over an array
But so-called iterator methods make it more elegant, and reduce
complexity and possible errors

each enumerates over each element in the array
An iteration variable between two vertical bars is used to access elements

>> primes = [2, 3, 5, 7]

=> [2, 3, 5, 7]

>> primes.each do |number|

puts number

end

2

3

5

7

In a similar way, the each index iterator provides access to all indexes of
an array

PP 2016/17 Unit 3 – Ruby Basics 32/38

Arrays and Hashes

Deleting Array Elements

Deleting array elements

>> a = Array["orange", "lemon", "apple"]

=> ["orange", "lemon", "apple"]

Delete element at index 1

>> a.delete at(1)

=> "lemon"

>> puts a

orange

apple

=> nil

Delete element with value ”apple”

a.delete("apple")

=> "apple"

>> puts a

orange

=> nil

PP 2016/17 Unit 3 – Ruby Basics 33/38

Arrays and Hashes

Hashes

A hash is a collection of key-value pairs like this:
"employee" => "salary"

The keys are labels, the values are objects
We can look up an object in a hash using its label

A hash is similar to an array, except that indexing is done via arbitrary keys
of any object type, not an integer index

>> numbers = {’obj1’ => ’one’, ’obj2’ => ’two’}
=> "obj1"=>"one", "obj2"=>"two"

>> numbers[’obj1’]

=> "one"

>> numbers[’obj2’]

=> "two"

>> numbers[’obj1’] = ’three’

=> "three"

>> numbers[’obj3’]

=> nil

PP 2016/17 Unit 3 – Ruby Basics 34/38

Arrays and Hashes

Creating Hashes

There are many different ways to create hashes
The following creates an empty hash

>> months = Hash.new

=> {}

>> days = {}
=> {}

A hash with default value ’month’ (which otherwise is just nil)
Default value is returned if the access key doesn’t exist

>> months = Hash.new(’month’)

=> {}

>> months[’jan’] = ’January’

=> "January"

>> months[’jan’]

=> "January"

>> months[’feb’]

=> "month"
PP 2016/17 Unit 3 – Ruby Basics 35/38

Arrays and Hashes

Hashes and Labels

While the previous code works, there is a problem in using strings as labels
Every time we change one of the entries, a new string will be created for the
label, wasting memory

Two strings with the same value are stored at different memory locations,
hence are different string objects

>> ’string’ == ’string’

=> true

>> ’string’.object id == ’string’.object id

=> false

>> ’string’.object id

=> 19371260

>> ’string’.object id

=> 19358460

In contrast to strings, numbers are unique and are fine as labels

> 4.object id == 4.object id

=> true

PP 2016/17 Unit 3 – Ruby Basics 36/38

Arrays and Hashes

Symbols/1

A symbol in Ruby is an identifier preceeded by a colon, e.g., :symbol

A symbol is a unique, immutable string, i.e., it never changes

>> :highlander

=> :highlander

>> :highlander.class

=> Symbol

Every time we use :highlander, it will refer to the same object

>> :highlander.object id == :highlander.object id

=> true

Since a symbol is a special string, we can access the associated string

>> :highlander.to s

=> "highlander"

PP 2016/17 Unit 3 – Ruby Basics 37/38

Arrays and Hashes

Symbols/2

Once created, the values of a symbol cannot be changed

>> :highlander = "Sean Connery"

syntax error, unexpected ’=’, expecting $end

Symbols are perfect identifiers to be used for hash labels (instead of strings)

>> numbers = {:obj1 => ’one’, :obj2 => ’two’}
=> {:obj2=>"two", :obj1=>"one"}

>> numbers[:obj1]

=> "one"

PP 2016/17 Unit 3 – Ruby Basics 38/38

	Basics
	Control Structures
	Typing
	Arrays and Hashes

