Programming Paradigms
Unit 3 — Ruby Basics
J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

PP 2016/17 Unit 3 — Ruby Basics 1/38

I
QOutline

© Basics

© Control Structures

© Typing

e Arrays and Hashes

PP 2016/17 Unit 3 — Ruby Basics 2/38

QOutline

© Basics

PP 2016/17 Unit 3 — Ruby Basics 3/38

Basics

Meet Ruby

@ It's time to start programming: for the object-oriented part we are using

LA

Ruby

Ruby was created by Yukihiro Matsumoto around 1993
It is an interpreted, object-oriented, dynamically typed language
Ruby optimizes the simplicity and the productivity of the programmers

The efficiency of the lanugage is less important

e © ¢ ¢ ¢

Official Web page: http://www.ruby-lang.org/en/

PP 2016/17 Unit 3 — Ruby Basics 4/38

Ruby Interpreter

@ In Linux, open a shell and type irb to start the interactive Ruby interpreter
rb(main) :001:0>

@ The Ruby interpreter is now open and ready to execute interactively ruby
expressions read from stdin

@ An input expression is executed when it is syntactically completed (can be
one line or multiple lines)

>> "Hello World!"
=> "Hello World!"

@ Every evaluated expression returns a value
@ IRB tells us the result of the last evaluated expression
@ In the above expression, it returns simply the string "Hello World!'"

@ s this the world’s shortest " Hello World” program?

PP 2016/17 Unit 3 — Ruby Basics 5/38

Hello World Program

@ Now lets look at the Hello World program in Ruby

>> puts "Hello World!"
Hello World!
=> nil

@ puts is the basic command to print something
@ The puts command always returns nil

@ Alternatively, you could also write: print "Hello Ruby!\n"

@ Compare this to Java:

import java.io.x*;
public class Hello {
public static void main (String[] args) {
System.out.println ("Hello Ruby!\n");
}

}

PP 2016/17 Unit 3 — Ruby Basics 6/38

Ruby Source Files

@ Sometimes it is desirable to store Ruby programs in a (source) file
@ By convention, Ruby source files should have the extension .rb
@ Consider the following program stored in hello.rb
puts "Hello World!"

@ Can be executed in a (Linux) console using the Ruby interpreter:
ruby <filename>
@ Gets a script of statements to execute
@ Begins executing at the first line and continues to the last line

gamper@carbon: ruby hello.rb
Hello World!
gamper@carbon:

@ Alternatively, you can also load the file into irb: load <filename>

>> load ’hello.rb’
Hello World!
=> true

PP 2016/17 Unit 3 — Ruby Basics 7/38

Single-quoted Strings

]
*]

e © ¢ ¢

There are (at least) two different types of strings
Simplest string literals are enclosed in single quotes

o String is interpreted literally
9 The text within the quotes is the value of the string

>> language = ’Ruby’

=> llRubyll

>> puts ’Hello #{language}!’
Hello #language!

=> nil

language is a local variable

Local variables start with a lowercase letter or *_’

= is the assignment operator (which returns the variable value)
Implicit declaration of local variable in first assignment

PP 2016/17 Unit 3 — Ruby Basics 8/38

Double-quoted Strings

@ Strings enclosed in double quotes

9 String is evaluated before it is returned

@ Supports expression substitution as a means of embedding the value of any

Ruby expression into a string using #{...}

>> language = ’Ruby’

=> "R.llby"

>> puts "Hello #{language}!"
Hello Ruby!

=> nil

>> puts "The sum is #{2 + 3}!"
The sum is 5

=> nil

PP 2016/17 Unit 3 — Ruby Basics

9/38

Strings with Other Delimiters

@ Strings can also be enclosed in a pair of matching though arbitrary
delimiter characters preceded by a %

o eg., ! (,{ etc,
@ Supports expression substitution too
>> puts %{Ruby is fun.}
>> Ruby is fun.
=> nil
>> puts %(Ruby is fun.)
>> Ruby is fun.
=> nil
>> puts %<The sum is #{2 + 3}!>
The sum is 5
=> nil

@ ... and there are even more ways to represent strings

PP 2016/17 Unit 3 — Ruby Basics 10/38

Comparisons

@ Ruby has the standard comparison (==, >=, !=, etc.) and Boolean (and,
or,

PP 2016/17

not) operators

=4

W< N
]
w

x == 4
true
x >= 4
true

(x == 4) and (y > 5)
false

(x '= 3) or (not (y < 4))
true

Unit 3 — Ruby Basics

11/38

Object-Orientation

@ Ruby is a “pure” object-oriented language

@ Everything is an object, even numbers, strings and expressions are objects
o class returns the class of an object
@ methods returns the methods of an object
9 object_id returns the identfier of object

>> 4.class
=> Fixnum

>> 4 .methods

=> [n%u s "odd?" s n inspect" s "prec,i" s
>> 4.object_id

=> 9

>> ’Hello World!’.class

=> String

>> (2 + 3).class
=> Fixnum

>> (3 < 4).class
=> TrueClass

PP 2016/17 Unit 3 — Ruby Basics 12/38

)
QOutline

© Control Structures

PP 2016/17 Unit 3 — Ruby Basics 13/38

Conditionals: if and unless/1

@ Ruby provides if and unless
@ Both come in two flavors
9 block:
if condition
statements
end
9 one-line: statement if condition

>> x =4

=> 4

>> if x == 4

>> puts ’x is equal to 4’
>> end

X is equal to 4

=> nil

>> puts ’x is equal to 4’ if x ==
x is equal to 4
=> nil

PP 2016/17 Unit 3 — Ruby Basics 14/38

Conditionals: if and unless/2

@ Even if not really needed, unless allows sometimes to express conditions
much better than with negation

>y =3

=> 3

>> unless y ==

>> puts ’y is different from 3’
>> end

=> nil

>> puts ’y is different from 3’ unless y ==
=> nil

PP 2016/17 Unit 3 — Ruby Basics 15/38

Conditionals: if and unless/3

@ The if and unless statements also support else branches

>> if x > 4 >> unless y > 3

>> puts ’x is greater than 4’ >> puts ’y is less than 3’

>> else >> else

>> puts ’x is less than 4’ >> puts ’y is greater than 3’
>> end >> end

x is less than 4 y is greater than 3

=> nil => nil

PP 2016/17 Unit 3 — Ruby Basics 16/38

Conditionals: case

@ Similar to other languages, Ruby provides a case-statement

case ezxpr0 >> age = b
when ezprl [, ezpr2, ...] =>5
stmtl

>> case age

>> when 0..2, 90..100

>> puts "baby or old man"
>> when 3..12

>> puts "child"

>> when 13..18

>> puts "youth"

when exzpr3 [, exprs, ...]
[else

stmt3]
end

>> else
@ 10..20 represents a
>> puts "adult"
range of numbers
>> end
child

=> nil

PP 2016/17 Unit 3 — Ruby Basics 17/38

Loops

@ Ruby has two constructs for loops: while and until

> z =0 >z =0

=> 0 => 0

>> while z < 10 >> until z > 9
>> z=z+1 >> z=z+1
>> end >> end

=> nil => nil

>> z >> z

=> 10 => 10

@ One-line versions are also supported

z + 1 while z < 10
z + 1 until z > 9

N N
nn

PP 2016/17 Unit 3 — Ruby Basics 18/38

QOutline

© Typing

PP 2016/17 Unit 3 — Ruby Basics 19/38

A Strongly Typed Language

@ For the most part, Ruby is a strongly typed language

>> 4 + 4
=> 8

>> 4 + 40
TypeError: String can’t be coerced into Fixnum ...

> 4 + 4.0
=> 8.0

PP 2016/17 Unit 3 — Ruby Basics 20/38

Dynamic Typing

@ Ruby definitely uses dynamic typing, i.e., type checking takes place when
the code is actually executed (not when it is defined)

@ Defining a function add_four_and_four that adds a number and a string is

OK

>> def add_four_and_four
>> 4 + ’four’

>> end

=> nil

@ Calling the function yields a runtime error

>> add_four_and_four
TypeError: String can’t be coerced into Fixnum ...

PP 2016/17 Unit 3 — Ruby Basics 21/38

Substitutability

@ Ruby is very flexible when it comes to substitutability

>> a = [’100’, 100.0, 100, ’a’]
=> ["100", 100.0, 100, "a"]

@ Variable a is an array that stores a string, a float, and an integer

> 1 =0
=> 0

>> while i < 3

>> puts alil.to_i
>> i=1i+1

>> end

100

100

100

0

@ The method to_i is applied to each element and performs a
conversion-to-integer function (gives 0 for "a")

PP 2016/17 Unit 3 — Ruby Basics 22/38

Duck Typing/1

@ What we have seen on the previous slide is called duck typing
@ Duck typing refers to the tendency of Ruby

@ to be less concerned with the class of an object
@ and more concerned with what methods can be called on it and what
operations can be performed on it

/0
“If it walks like a duck and swims like ‘
a duck and quacks like a duck, it is a e
duck”
- _/

PP 2016/17 Unit 3 — Ruby Basics 23/38

Duck Typing/2

@ Duck typing allows a programmer to code to interfaces without a lot of
overhead, e.g.,
9 If an object has push() and pop() methods, you can treat it like a stack
@ If it does not, you cannot

@ Nevertheless, duck typing comes at a price
9 All the standard tools and techniques for statically typed languages won't
work
@ You cannot catch as many errors automatically as with static typing, making
debugging more difficult

PP 2016/17 Unit 3 — Ruby Basics 24/38

)
QOutline

e Arrays and Hashes

PP 2016/17 Unit 3 — Ruby Basics 25/38

Arrays/1

@ Ruby arrays are ordered, integer-indexed collections of any object

@ Each element in an array is referred to by an index, starting with O for the
first element

>> animals = [’lions’, ’tigers’, ’bears’]
=> ["lions", "tigers", "bears"]

>> animals[0]
=> "lions"

>> animals[2]
=> "bears"

PP 2016/17 Unit 3 — Ruby Basics 26/38

Arrays/2

@ There are certain peculiarities about arrays in Ruby
@ You have already seen an array containing objects of many different types
@ Accessing elements beyond an array returns nil (not an error!)

>> animals[10]
=> nil

@ Elements can be referenced from the end of the array
9 Index -1 gives the last element

>> animals[-1]
=> "bears"
>> animals[-2]
=> '"tigers"
@ Or a range of items can be selected
>> animals[0..1]
=> ["lions", "tigers"]

PP 2016/17 Unit 3 — Ruby Basics 27/38

Arrays/3

@ Before using a variable to hold an array, it has to be declared as one
>> al0] =0
NameError: undefined local variable

>> a = []
=> []

>> al0] =0
=>0

@ There are also other ways to declare and create arrays
b = Array.new
=> []

¢ = Array.new(4)
=> [nil, nil, nil, nil]

¢ = Array.new(4, ’Ruby’)
=> ["Ruby", "Ruby", "Ruby", "Ruby"]

PP 2016/17 Unit 3 — Ruby Basics 28/38

Arrays/4

@ Though we can specify the size of arrays when we create an array, there is
no need to do so

@ Ruby arrays grow automatically while adding elements to them

>> b[0] = ’a’

=> "g"

>> b[1] = ’b’
=> "p"

>> b[2] = ’¢’

=> "en

>> b
=> [uau, Ilbll, "C"]

PP 2016/17 Unit 3 — Ruby Basics 29/38

Arrays/5

@ Arrays don’t have to be homogeneous, rather they can hold elements of
any type, even nested arrays

>> a = [’zero’, 1]
=> ["zero", 1]

>> al[2] = [’two’, ’things’]
=> ["two", "things"]

>> a
=> ["zero", 1, ["two", "things"]]

@ Multidimensional arrays are just arrays of arrays
>> a = [[1,2,3],[4,5,6],[7,8,9]]
=> [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>> al[1][2]
=> 6

PP 2016/17 Unit 3 — Ruby Basics 30/38

Ducktyping and Arrays

@ Arrays implement a very rich interface
>> [] .methods
=> [:to_s, :to._a, :first, :last, :concat, :push, :pop
:shift, :unshift, :insert, :each, :length, :size, ...]

@ Arrays can be used as queues, linked lists, stacks, sets, etc.
@ Example: array as stack

>> a = [1]
=> [1]

>> a.push(3)
=> [1, 3]
>> a.pop

=> 3

>> a.pop
=>1

>> a

= []

PP 2016/17 Unit 3 — Ruby Basics 31/38

Iterating through Arrays

@ Any loop can be used to iterate over an array
@ But so-called iterator methods make it more elegant, and reduce
complexity and possible errors
9 each enumerates over each element in the array
@ An iteration variable between two vertical bars is used to access elements

>> primes = [2, 3, 5, 7]
=> [2, 3, 5, 7]

>> primes.each do |number|
puts number
end

~N oW N

@ In a similar way, the each_index iterator provides access to all indexes of
an array

PP 2016/17 Unit 3 — Ruby Basics 32/38

Deleting Array Elements

@ Deleting array elements

>> a = Array["orange", "lemon", "apple"]
=> ["orange", "lemon", "apple"]

@ Delete element at index 1
>> a.delete_at (1)
=> "lemon"

>> puts a

orange

apple

=> nil

@ Delete element with value "apple”

a.delete("apple")

=> "apple"

>> puts a

orange

=> nil

PP 2016/17 Unit 3 — Ruby Basics 33/38

Hashes

@ A hash is a collection of key-value pairs like this:
"employee" => "salary"
@ The keys are labels, the values are objects
2 We can look up an object in a hash using its label
@ A hash is similar to an array, except that indexing is done via arbitrary keys
of any object type, not an integer index

>> numbers = {’objl’ => ’one’, ’o0bj2’ => ’two’}
=> "objl"=>"one", "Obj2"=>"tWO"

>> numbers[’objl’]
=> "one"

>> numbers[’obj2’]

=> "two"
>> numbers[’objl’] = ’three’
=> "three"

>> numbers[’obj3’]
=> nil

PP 2016/17 Unit 3 — Ruby Basics 34/38

Creating Hashes

@ There are many different ways to create hashes
@ The following creates an empty hash

>>
=>

>>
=>

months = Hash.new

{

days = {}
!

@ A hash with default value *month’ (which otherwise is just nil)

>>

=>
PP 2016/17

9 Default value is returned if the access key doesn't exist

months = Hash.new(’month’)
{

months[’jan’] = ’January’
"January"

months[’jan’]

"January"

months[’feb’]

"month"
Unit 3 — Ruby Basics 35/38

Hashes and Labels

@ While the previous code works, there is a problem in using strings as labels

>>

9 Every time we change one of the entries, a new string will be created for the

label, wasting memory
@ Two strings with the same value are stored at different memory locations,
hence are different string objects

’string’
true
’string’.
false
’string’.
19371260
’string’.
19358460

== ’string’

object_id == ’string’.object_id

object_id

object_id

@ In contrast to strings, numbers are unique and are fine as labels

> 4.object_i

=>

PP 2016/17

true

== 4.object_id

Unit 3 — Ruby Basics 36/38

Symbols/1

@ A symbol in Ruby is an identifier preceeded by a colon, e.g., :symbol

@ A symbol is a unique, immutable string, i.e., it never changes

>> :highlander
=> :highlander

>> :highlander.class
=> Symbol

@ Every time we use :highlander, it will refer to the same object

>> :highlander.object_id == :highlander.object_id
=> true

@ Since a symbol is a special string, we can access the associated string

>> :highlander.to_s
=> "highlander"

PP 2016/17 Unit 3 — Ruby Basics 37/38

Symbols/2

@ Once created, the values of a symbol cannot be changed

>> :highlander = "Sean Connery"
syntax error, unexpected ’=’, expecting $end

@ Symbols are perfect identifiers to be used for hash labels (instead of strings)

>> numbers = {:objl => ’omne’, :0bj2 => ’two’}
=> {:0bj2=>"two", :objl=>"one"

>> numbers[:obj1]
=> "one"

PP 2016/17 Unit 3 — Ruby Basics 38/38

	Basics
	Control Structures
	Typing
	Arrays and Hashes

