
Programming Paradigms
Unit 2 — Imperative and Object-oriented Paradigm

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 1/39



Outline

1 Imperative Programming Paradigm

2 Abstract Data Types

3 Object-oriented Approach

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 2/39



Imperative Programming Paradigm

Outline

1 Imperative Programming Paradigm

2 Abstract Data Types

3 Object-oriented Approach

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 3/39



Imperative Programming Paradigm

Imperative Paradigm/1

The imperative paradigm is the oldest and most popular paradigm

Based on the von Neumann architecture of computers

Imperative programs define sequences of commands/statements for the
computer that change a program state

Commands are stored in memory and executed in the order found
Commands retrieve data, perform a computation, and assign the result to a
memory location

Data
←→ Memory

CPU (Data and
Address Program)
←→

The hardware implementation of almost all
computers is imperative

Machine code, which is native to the
computer, and written in the imperative style

Machine code

8B542408 83FA0077 06B80000

C9010000 008D0419 83FA0376

B84AEBF1 5BC3

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 4/39



Imperative Programming Paradigm

Imperative Paradigm/2

Central elements of imperative paradigm:

Assigment statement: assigns values to memory locations and changes the
current state of a program
Variables refer to memory locations
Step-by-step execution of commands
Control-flow statements: Conditional and unconditional (GO TO) branches
and loops to change the flow of a program

Example of computing the factorial of a number:

unsigned int n = 5;

unsigned int result = 1;

while(n > 1) {
result *= n;

n--;

}

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 5/39



Imperative Programming Paradigm

Procedural Programming

Procedural programming is a refinement of the imperative paradigm adding
subroutines (or procedures)

Procedures can be used the same way that built-in commands are used
(allows re-usability)
Some state changes are localized in this way

Creating a procedure from the previous example:

int factorial(unsigned int n) {
unsigned int result = 1;

while(n > 1) {
result *= n;

n--;

}
return result;

}

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 6/39



Imperative Programming Paradigm

History of Imperative Paradigm/1

Earliest imperative languages were the machine languages of the computers

Very simple instructions
Made hardware implementation easier, but difficult to create complex
programs

In 1954, FORTRAN was developed by John Backus at IBM

First major programming language
Removed problems of machine code for the creation of complex programs
Many features that are common in imperative languages, e.g., named
variables, complex expressions, subprograms, etc.
FORTRAN was a compiled language

The next two decades saw the development of a number of other major
high-level imperative programming languages

In the late 1950s, ALGOL (short for ALGOrithmic Language) was developed
in order to allow mathematical algorithms to be more easily expressed

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 7/39



Imperative Programming Paradigm

History of Imperative Paradigm/2

COBOL (1960) and BASIC (1964) were both attempts to make
programming syntax look more like English

In the 1970s, Niklaus Wirth at ETH Zurich developed Pascal as a small and
efficient language intended to encourage good programming practices using
structured programming and data structuring

C was created by Dennis Ritchie at Bell Laboratories

Used to (re-)implement the Unix operating system
Has become one of the most widely used programming languages of all time

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 8/39



Imperative Programming Paradigm

History of Imperative Paradigm/3

In the 1980s, there is a rapid growth in interest in object-oriented
programming

Imperative in style, but added features to support objects

Simula was the first OO-language, and influenced other languages (1960s)

Smalltalk-80 was released in 1980 by the Xerox Palo Alto Research Center

Bjarne Stroustrup designed C++, an object-oriented language based on C

OO languages in the late 1980s and 1990s:

Perl (Larry Wall in 1987)
Python (Guido van Rossum, 1990)
Visual Basic and Visual C++ (Microsoft, 1991 and 1993)
PHP (Rasmus Lerdorf, 1994)
Java (Sun Microsystems, 1994)
Ruby (Yukihiro Matsumoto, 1995)

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 9/39



Abstract Data Types

Outline

1 Imperative Programming Paradigm

2 Abstract Data Types

3 Object-oriented Approach

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 10/39



Abstract Data Types

Abstract Data Types

The procedural approach in imperative programming was taken further by
introducing abstract data types (ADT)

In ADTs, everything related to a type is encapsulated in one bundle, most
importantly

data itself and
operations on the data

This hides the underlying representation and actual implementation
(information hiding)

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 11/39



Abstract Data Types

Information Hiding

What are the advantages of information hiding?

Allowing access to data only via a specified set of operations increases type
safety
An implementation of an ADT can be replaced by a different (more
efficient) one without having to rewrite other parts of the code
Code becomes more portable and easier to reuse

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 12/39



Abstract Data Types

Limits of Data Abstraction

While ADTs exhibit important features such as encapsulation and
information hiding, there are still shortfalls

We will have a look at these with a concrete (though simplified) example

Assume we want to define an ADT implementing a counter

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 13/39



Abstract Data Types

ADT Counter

This ADT provides a counter of type integer, which can be read,
incremented, and reset

abstracttype Counter {
type

Counter = int x;

operations

int get(Counter x) { return x; };
void inc(Counter x) { x++; };
void reset(Counter x) { x := 0; };

}

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 14/39



Abstract Data Types

ADT NewCounter/1

Assume we want to extend this type by adding an operation that tells us
how many times we have reset the counter

We could define a completely new ADT

abstracttype NewCounter {
type

NewCounter = struct {int c;

int noOfResets = 0;}
operations

int get(NewCounter x) { ...};
void inc(NewCounter x) { ...};
void reset(NewCounter x) { ...};
int howManyResets(NewCounter x) { ...};

}

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 15/39



Abstract Data Types

ADT NewCounter/2

In terms of encapsulation and information hiding this is fine

However, we have to redefine and re-implement all operations, even though
most of them work exactly the same way as in Counter

Gets worse if we want more extensions to the type Counter or NewCounter

Adding more types leads to redundancy

This causes unnecessary work (and increases the size of the code)
More difficult to maintain, may result in inconsistencies

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 16/39



Abstract Data Types

ADT NewCounter/3

Another approach would be to re-use the ADT Counter when defining
NewCounter

abstracttype NewCounter {
type

NewCounter = struct {Counter c; int noOfResets = 0;}
operations

int get(NewCounter x) { ...};
void inc(NewCounter x) { ...};
void reset(NewCounter x) { ...};
int howManyResets(NewCounter x) { ...};

}

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 17/39



Abstract Data Types

ADT NewCounter/4

What would the implementation of the operators looks like in this case?

Re-uses the implementation of Counter:

int get(NewCounter x) {
return get(x.c);

}
...

void reset(NewCounter x) {
reset(x.c);

x.noOfResets++;

}
...

}

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 18/39



Abstract Data Types

ADT NewCounter/5

This solution still has drawbacks

We have to map new operators explicitly to old operators
If we extend NewCounter again, an operator is mapped to the NewCounter

operator, which is mapped to the Counter operator . . .
It would be great if the derived ADT could just inherit the operators from
the original ADT

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 19/39



Abstract Data Types

ADT NewCounter/6

Further problems with typing

Assume we have a group of counters, some of type Counter and some of
type NewCounter

If we want to store these in an array, what would the array look like?
Counter Z[20] cannot store NewCounter

NewCounter Z[20] cannot store Counter

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 20/39



Abstract Data Types

Type Compatibility

When we introduced type systems, we briefly mentioned compatibility rules,
i.e., one type can be substituted for another

Let us define type compatibility between type S and type T in more detail:

T is compatible with S when all operations over values of type S are also
possible over values of T
So NewCounter is compatible with Counter

Substitutability allows us to use NewCounter whenever a Counter is
expected

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 21/39



Abstract Data Types

ADT NewCounter/7

Using substitutability we can define an array Counter Z[20] and put
counters of type NewCounter into it

However, what happens if we run the following code?

for(int i; i < 20; i++)

reset(Z[i]);

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 22/39



Abstract Data Types

ADT NewCounter/8

During compilation a type checker will be satisfied, as reset() is a valid
operation on Counter

But which version of reset() will be executed?

If this is determined statically (e.g. during compilation), then

this will be reset() of Counter, as Z is of type Counter

As a consequence, noOfResets of NewCounter will not be updated

In order to make this work we need to check the “true” type of a counter
stored in Z and select the correct operator dynamically

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 23/39



Object-oriented Approach

Outline

1 Imperative Programming Paradigm

2 Abstract Data Types

3 Object-oriented Approach

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 24/39



Object-oriented Approach

Object-oriented Approach

In the object-oriented paradigm, all the previously mentioned issues are
resolved

There is encapsulation and information hiding
Under certain conditions, inheritance of operator implementations is
permitted
Types can be substituted for one another if they are compatible
Operators are selected dynamically depending on the actual type

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 25/39



Object-oriented Approach

Objects/1

Objects encapsulate both the data and the operations on the data (well, at
least conceptually)

Operations are usually called methods and are sent as a message to an
object

This means, that the object receiving the message is an implicit parameter
So for our example, the operations on Counter would not need any
additional parameters

Assuming we have an object o implementing a counter, then we would

increase it by calling

o.inc();

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 26/39



Object-oriented Approach

Sending Messages

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 27/39



Object-oriented Approach

Objects/2

So a Counter object would look like this:

x

get return this.x;

inc this.x++;

reset this.x = 0;

However, when implementing object-oriented languages, the code for
operations is not stored explicitly with every object

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 28/39



Object-oriented Approach

Classes/1

A class acts as a blueprint for objects and basically defines a type

class Counter {
private:

int x;

public:

int get();

void inc();

void reset();

}

Parts declared private are not accessible from the outside

Parts declared public are visible to all

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 29/39



Object-oriented Approach

Classes/2

So classes accomplish encapsulation and information hiding

In addition to this, Counter can be extended in a more elegant way

class NewCounter extending Counter {
private:

int noOfResets = 0;

public:

void reset() {
x := 0;

noOfResets++;

};
int howManyResets() {

return noOfResets;

};
}

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 30/39



Object-oriented Approach

Substitutability

We also have substitutability

Every message understood by Counter objects is also understood by
NewCounter objects

NewCounter re-uses the methods get() and inc()

it redefines the method reset()

This is also called overriding

It also defines a new method howManyResets()

Clearly, additional methods do not pose a problem for substitutability

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 31/39



Object-oriented Approach

Inheritance

We also say that all the methods that are not redefined inherit their
implementation from the superclass

Some languages (such as C++) allow multiple inheritance

That means a class can have more than one superclass
Can be problematic due to name clashes

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 32/39



Object-oriented Approach

Substitutability and Inheritance

Although some languages implement substitutability and inheritance using
the same constructs, these are different concepts

Substitutability allows the use of an object in another context

Object does not have to be of a subclass to understand same methods

Inheritance allows the re-use of code (for methods)

Private inheritance in C++ re-uses code, but does not allow substitutability

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 33/39



Object-oriented Approach

Dynamic Method Lookup/1

A method defined for one object can be redefined in objects belonging to
other classes

That means there can be many versions of a method

In order to figure out which one to use, we have to look at the actual type
of the object the message is sent to

This is also called dynamic dispatch

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 34/39



Object-oriented Approach

Dynamic Method Lookup/2

Looking at our Counter example in an object-oriented setting

for(int i; i < 20; i++)

reset(Z[i]);

gives us the correct results using dynamic dispatch

Not to be confused with operator overloading, in which multiple versions of
a method with different parameters can exist, e.g.,

void reset();

void reset(int a);

int reset();

Correct method would be selected by matching its signature

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 35/39



Object-oriented Approach

Polymorphism

Nevertheless, dynamic method lookup and operator overloading are
different facets of polymorphism

Polymorphism means that an object or method can have more than one
form

Yet another kind of polymorphism is parametric polymorphism or generics

Also called templates in C++

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 36/39



Object-oriented Approach

Generics

Generics consist of program fragments, where some types are indicated by
parameters

These parameters can then be instantiated by “concrete” types

Depending on the generics, the type used for instantiation has to
implement certain methods

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 37/39



Object-oriented Approach

Generics Example

Implement a stack without having to re-implement it for every possible
data type of its content

class Elem <A> {
A content;

Elem <A> next;

}
class Stack <A> {

private:

Elem <A> top = null;

public:

boolean isEmpty();

void push(A object);

A pop();

}

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 38/39



Object-oriented Approach

Summary

Imperative paradigm is the oldest programming paradigm, based on
von Neumann architecture

Program consists of sequence of statements that change the program state

Procedural programming is a refinement that makes it easier to write
complex programs

Machine languages were the earliest imperative languages, followed by
FORTRAN and ALGOL

Abstract Data Types is a further extension of imperative programming

Data and operations are encapsulated into a bundle (information hiding)
This hides the underlying represenation and implementation

Object-oriented paradigm extends ADTs

Classes are blueprints for objects that encapsulae both data and operations
Objects exchange messages
Provides encapsulation, information hiding, inheritance, and dynamic
dispatching

PP 2016/17 Unit 2 – Imperative and Object-oriented Paradigm 39/39


	Imperative Programming Paradigm
	Abstract Data Types
	Object-oriented Approach

