Programming Paradigms
Unit 2 — Imperative and Object-oriented Paradigm
J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 1/39

I
QOutline

o Imperative Programming Paradigm

e Abstract Data Types

9 Object-oriented Approach

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 2/39

)
QOutline

o Imperative Programming Paradigm

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 3/39

Imperative Paradigm/1

@ The imperative paradigm is the oldest and most popular paradigm

@ Based on the von Neumann architecture of computers

@ Imperative programs define sequences of commands/statements for the
computer that change a program state
@ Commands are stored in memory and executed in the order found
o Commands retrieve data, perform a computation, and assign the result to a

memory location

Data
— Memory
CPU (Data and
Address | Program)
—
@ The hardware implementation of almost all Machine code
computers is imperative
. . . . 8B542408 83FA0077 06B80000
@ Machine code, which is native to the £9010000 008D0419 83FA037E

computer, and written in the imperative style Bg4aEBF1 5BC3

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 4/39

Imperative Paradigm/2

@ Central elements of imperative paradigm:
@ Assigment statement: assigns values to memory locations and changes the
current state of a program
@ Variables refer to memory locations
@ Step-by-step execution of commands
o Control-flow statements: Conditional and unconditional (GO TO) branches
and loops to change the flow of a program

@ Example of computing the factorial of a number:

unsigned int n = 5;
unsigned int result = 1;
while(n >1) {

result *= n;

n--;

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 5/39

Procedural Programming

@ Procedural programming is a refinement of the imperative paradigm adding
subroutines (or procedures)
@ Procedures can be used the same way that built-in commands are used
(allows re-usability)
@ Some state changes are localized in this way

@ Creating a procedure from the previous example:

int factorial(unsigned int n) {
unsigned int result = 1;
while(n>1) {
result *= n;
n--;
}

return result;

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 6/39

History of Imperative Paradigm/1

@ Earliest imperative languages were the machine languages of the computers
9 Very simple instructions
@ Made hardware implementation easier, but difficult to create complex
programs
@ In 1954, FORTRAN was developed by John Backus at IBM
o First major programming language
9 Removed problems of machine code for the creation of complex programs
@ Many features that are common in imperative languages, e.g., named
variables, complex expressions, subprograms, etc.
o FORTRAN was a compiled language
@ The next two decades saw the development of a number of other major
high-level imperative programming languages
o In the late 1950s, ALGOL (short for ALGOrithmic Language) was developed
in order to allow mathematical algorithms to be more easily expressed

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 7/39

History of Imperative Paradigm/2

@ COBOL (1960) and BASIC (1964) were both attempts to make
programming syntax look more like English

@ In the 1970s, Niklaus Wirth at ETH Zurich developed Pascal as a small and
efficient language intended to encourage good programming practices using
structured programming and data structuring

@ C was created by Dennis Ritchie at Bell Laboratories

@ Used to (re-)implement the Unix operating system
@ Has become one of the most widely used programming languages of all time

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 8/39

History of Imperative Paradigm/3

@ In the 1980s, there is a rapid growth in interest in object-oriented
programming
@ Imperative in style, but added features to support objects
@ Simula was the first OO-language, and influenced other languages (1960s)
@ Smalltalk-80 was released in 1980 by the Xerox Palo Alto Research Center

@ Bjarne Stroustrup designed C++-, an object-oriented language based on C
@ OO languages in the late 1980s and 1990s:

Perl (Larry Wall in 1987)

Python (Guido van Rossum, 1990)

Visual Basic and Visual C++ (Microsoft, 1991 and 1993)

PHP (Rasmus Lerdorf, 1994)

Java (Sun Microsystems, 1994)

Ruby (Yukihiro Matsumoto, 1995)

(9

¢ ¢ ¢ ¢ ¢

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 9/39

)
QOutline

9 Abstract Data Types

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 10/39

Abstract Data Types

Abstract Data Types

@ The procedural approach in imperative programming was taken further by
introducing abstract data types (ADT)

@ In ADTs, everything related to a type is encapsulated in one bundle, most
importantly

o data itself and
@ operations on the data

@ This hides the underlying representation and actual implementation
(information hiding)

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 11/39

Information Hiding

@ What are the advantages of information hiding?
@ Allowing access to data only via a specified set of operations increases type

safety

@ An implementation of an ADT can be replaced by a different (more
efficient) one without having to rewrite other parts of the code

@ Code becomes more portable and easier to reuse

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 12/39

Limits of Data Abstraction

@ While ADTs exhibit important features such as encapsulation and
information hiding, there are still shortfalls

@ We will have a look at these with a concrete (though simplified) example

@ Assume we want to define an ADT implementing a counter

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 13/39

ADT Counter

@ This ADT provides a counter of type integer, which can be read,

incremented, and reset

abstracttype Counter {
type
Counter = int x;
operations
int get(Counter x) { return x; };
void inc(Counter x) { x++; };

void reset(Counter x) { x := 0; };

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm

14/39

ADT NewCounter/1

@ Assume we want to extend this type by adding an operation that tells us
how many times we have reset the counter

@ We could define a completely new ADT

abstracttype NewCounter {
type
NewCounter = struct {int c;
int noOfResets = 0;}
operations
int get(NewCounter x) { ...};
void inc(NewCounter x) { ...};
void reset(NewCounter x) { ...};
int howManyResets(NewCounter x) { ...};

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 15/39

ADT NewCounter/2

@ In terms of encapsulation and information hiding this is fine

@ However, we have to redefine and re-implement all operations, even though
most of them work exactly the same way as in Counter

@ Gets worse if we want more extensions to the type Counter or NewCounter

@ Adding more types leads to redundancy

@ This causes unnecessary work (and increases the size of the code)
@ More difficult to maintain, may result in inconsistencies

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 16/39

ADT NewCounter/3

@ Another approach would be to re-use the ADT Counter when defining

NewCounter

abstracttype NewCounter {
type
0;}

NewCounter = struct {Counter c; int noOfResets =

operations
int get(NewCounter x) { ...};
void inc(NewCounter x) { ...};
void reset(NewCounter x) { ...};
int howManyResets(NewCounter x) { ...};

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 17/39

ADT NewCounter/4

@ What would the implementation of the operators looks like in this case?

@ Re-uses the implementation of Counter:

int get(NewCounter x) {
return get(x.c);
}

void reset(NewCounter x) {
reset(x.c);
x.no0fResets++;

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 18/39

ADT NewCounter/5

@ This solution still has drawbacks

@ We have to map new operators explicitly to old operators

9 If we extend NewCounter again, an operator is mapped to the NewCounter
operator, which is mapped to the Counter operator ...

@ It would be great if the derived ADT could just inherit the operators from
the original ADT

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 19/39

ADT NewCounter/6

@ Further problems with typing

@ Assume we have a group of counters, some of type Counter and some of
type NewCounter
@ If we want to store these in an array, what would the array look like?
@ Counter Z[20] cannot store NewCounter
9 NewCounter Z[20] cannot store Counter

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 20/39

Abstract Data Types

Type Compatibility

@ When we introduced type systems, we briefly mentioned compatibility rules,
i.e., one type can be substituted for another

@ Let us define type compatibility between type S and type T in more detail:

o T is compatible with S when all operations over values of type S are also
possible over values of T

@ So NewCounter is compatible with Counter

@ Substitutability allows us to use NewCounter whenever a Counter is
expected

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 21/39

ADT NewCounter/7

@ Using substitutability we can define an array Counter Z[20] and put
counters of type NewCounter into it

@ However, what happens if we run the following code?

for(int i; i < 20; i++)
reset(Z[i]);

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 22/39

ADT NewCounter/8

@ During compilation a type checker will be satisfied, as reset () is a valid
operation on Counter

@ But which version of reset () will be executed?

@ If this is determined statically (e.g. during compilation), then

9 this will be reset () of Counter, as Z is of type Counter
@ As a consequence, noOfResets of NewCounter will not be updated

@ In order to make this work we need to check the “true” type of a counter
stored in Z and select the correct operator dynamically

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 23/39

)
QOutline

9 Object-oriented Approach

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 24/39

Object-oriented Approach

@ In the object-oriented paradigm, all the previously mentioned issues are
resolved
@ There is encapsulation and information hiding
@ Under certain conditions, inheritance of operator implementations is
permitted
@ Types can be substituted for one another if they are compatible
@ Operators are selected dynamically depending on the actual type

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 25/39

Objects/1

@ Objects encapsulate both the data and the operations on the data (well, at
least conceptually)

@ Operations are usually called methods and are sent as a message to an
object

@ This means, that the object receiving the message is an implicit parameter
@ So for our example, the operations on Counter would not need any
additional parameters
@ Assuming we have an object o implementing a counter, then we would
increase it by calling

o.inc();

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 26/39

Object-oriented Approach

Sending Messages

PP 2016/17

geek & poke

Unit 2 — Imperative and Object-oriented Paradigm

27/39

Object-oriented Approach

Objects/2

@ So a Counter object would look like this:

@ However, when implementing object-oriented languages, the code for

X
get
inc

reset

return this.x;

this.x++;

this.x = 0;

operations is not stored explicitly with every object

PP 2016/17

Unit 2 — Imperative and Object-oriented Paradigm

28/39

Classes/1

@ A class acts as a blueprint for objects and basically defines a type

class Counter {
private:
int x;
public:
int get();
void inc();
void reset();

@ Parts declared private are not accessible from the outside

@ Parts declared public are visible to all

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 29/39

Classes/2

@ So classes accomplish encapsulation and information hiding

@ In addition to this, Counter can be extended in a more elegant way

class NewCounter extending Counter {
private:
int noOfResets = 0;
public:
void reset() {
x := 0;
noOfResets++;
s
int howManyResets() {
return noOfResets;

¥

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm

30/39

Substitutability

@ We also have substitutability

9 Every message understood by Counter objects is also understood by
NewCounter objects

@ NewCounter re-uses the methods get () and inc()
@ it redefines the method reset ()
9 This is also called overriding
@ It also defines a new method howManyResets ()
o Clearly, additional methods do not pose a problem for substitutability

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 31/39

Inheritance

@ We also say that all the methods that are not redefined inherit their
implementation from the superclass

@ Some languages (such as C++) allow multiple inheritance

@ That means a class can have more than one superclass
@ Can be problematic due to name clashes

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 32/39

Substitutability and Inheritance

@ Although some languages implement substitutability and inheritance using
the same constructs, these are different concepts
@ Substitutability allows the use of an object in another context
@ Object does not have to be of a subclass to understand same methods
@ Inheritance allows the re-use of code (for methods)
@ Private inheritance in C4++ re-uses code, but does not allow substitutability

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 33/39

Dynamic Method Lookup/1

@ A method defined for one object can be redefined in objects belonging to
other classes

@ That means there can be many versions of a method

@ In order to figure out which one to use, we have to look at the actual type
of the object the message is sent to

@ This is also called dynamic dispatch

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 34/39

Dynamic Method Lookup/2

@ Looking at our Counter example in an object-oriented setting

for(int i; i < 20; i++)
reset(Z[il);

gives us the correct results using dynamic dispatch

@ Not to be confused with operator overloading, in which multiple versions of
a method with different parameters can exist, e.g.,

void reset();
void reset(int a);
int reset();

@ Correct method would be selected by matching its signature

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 35/39

Object-oriented Approach

Polymorphism

@ Nevertheless, dynamic method lookup and operator overloading are
different facets of polymorphism
@ Polymorphism means that an object or method can have more than one

form
@ Yet another kind of polymorphism is parametric polymorphism or generics
@ Also called templates in C4++

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 36/39

)
Generics

@ Generics consist of program fragments, where some types are indicated by
parameters

@ These parameters can then be instantiated by “concrete” types

@ Depending on the generics, the type used for instantiation has to
implement certain methods

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 37/39

Generics Example

@ Implement a stack without having to re-implement it for every possible
data type of its content

class Elem <A> {
A content;
Elem <A> next;
}
class Stack <A> {
private:
Elem <A> top = null;
public:
boolean isEmpty();
void push(A object);
A popQ);

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 38/39

Summary

@ Imperative paradigm is the oldest programming paradigm, based on
von Neumann architecture

@ Program consists of sequence of statements that change the program state
@ Procedural programming is a refinement that makes it easier to write
complex programs
@ Machine languages were the earliest imperative languages, followed by
FORTRAN and ALGOL
@ Abstract Data Types is a further extension of imperative programming
¢ Data and operations are encapsulated into a bundle (information hiding)
@ This hides the underlying represenation and implementation
@ Object-oriented paradigm extends ADTs
@ Classes are blueprints for objects that encapsulae both data and operations
@ Objects exchange messages
@ Provides encapsulation, information hiding, inheritance, and dynamic
dispatching

PP 2016/17 Unit 2 — Imperative and Object-oriented Paradigm 39/39

	Imperative Programming Paradigm
	Abstract Data Types
	Object-oriented Approach

