
Programming Paradigms
Unit 1 — Introduction and Basic Concepts

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

Acknowledgements: I am indebted to Sven Helmer for providing me the slides.

PP 2016/17 Unit 1 – Introduction and Basic Concepts 1/33



Outline

1 Introduction

2 Basics of Programming Languages

PP 2016/17 Unit 1 – Introduction and Basic Concepts 2/33



Introduction

Outline

1 Introduction

2 Basics of Programming Languages

PP 2016/17 Unit 1 – Introduction and Basic Concepts 3/33



Introduction

Programming Languages and HCI

A programming language is an artificial
language designed to communicate
instructions to a machine, e.g., computer

The earliest programming languages
preceded the invention of the computer

e.g., used to direct the behavior of
machines such as Jacquard looms and
player pianos.

“Programming languages are the least

usable, but most powerful

human-computer interfaces ever invented”
Any Ko, http://bit.ly/1iVxF3A

The difference between a programming
language and a GUI comes down to just a
few key differences

PP 2016/17 Unit 1 – Introduction and Basic Concepts 4/33



Introduction

How Many Programming Languages Exist?/1

There are thousands of programming languages

The encyclopaedia britannica mentiones over 2,000 computer languages
As of May 2006 Diarmuid Pigott’s Encyclopedia of Computer Languages
hosted at Murdoch University, Australia lists over 8,000 computer languages
Still many new ones are created every year
(there are approximately 7,000 current human languages)

Few languages ever become sufficiently popular that they are used by more
than a few people

But professional programmers may use dozens of languages in a career

PP 2016/17 Unit 1 – Introduction and Basic Concepts 5/33



Introduction

How Many Programming Languages Exist?/2

PP 2016/17 Unit 1 – Introduction and Basic Concepts 6/33



Introduction

How Many Programming Languages Exist?/3

PP 2016/17 Unit 1 – Introduction and Basic Concepts 7/33



Introduction

Programming Languages and Abstraction

Programming languages provide an
abstraction from a computer’s
instruction set architecture

Low-level programming languages
provide little or no abstraction,
e.g., machine code and assembly
language

Difficult to use
Allows to program efficiently and
with a low memory footprint

High-level programming languages
isolate the execution semantics of
a computer architecture from the
specification of the program

Simplifies program development

Machine code

8B542408 83FA0077 06B80000 0000C383

C9010000 008D0419 83FA0376 078BD98B

B84AEBF1 5BC3

Assembly language

mov edx, [esp+8]

cmp edx, 0

ja @f

mov eax, 0

ret

High-level language

unsigned int fib(unsigned int n) {

if (n <= 0)

return 0;

else if (n <= 2)

return 1;

else

...

}

PP 2016/17 Unit 1 – Introduction and Basic Concepts 8/33



Introduction

Programming Paradigms/1

Programming languages can be categorized into programming paradigms

Meaning of the word ’paradigm’

“An example that serves as pattern or model”

The American Heritage Dictionary of the English Language
“Paradigms emerge as the result of social processes in which people develop

ideas and create principles and practices that embody those ideas”

Thomas Kuhn, “The Structure of Scientific Revolutions”

Programming paradigms are the result of people’s ideas about how
computer programs should be constructed

Patterns that serves as a “school of thoughts” for programming of
computers

PP 2016/17 Unit 1 – Introduction and Basic Concepts 9/33



Introduction

Programming Paradigms/2

PP 2016/17 Unit 1 – Introduction and Basic Concepts 10/33



Introduction

Programming Paradigms/3

Once you have understood the general concepts of programming
paradigms, it becomes easier to learn new programming languages

However, this does not mean that by just picking the right paradigm all
problems vanish into thin air

Or put more elegantly:

“There does not now, nor will there ever exist, a programming

language in which it is the least bit hard to write bad programs.”

L. Flon

PP 2016/17 Unit 1 – Introduction and Basic Concepts 11/33



Introduction

Principal Programming Paradigms

Imperative / Procedural

Functional

Object-Oriented

Concurrent

Logic

Scripting

In reality, very few languages are “pure”

Most combine features of different paradigms

PP 2016/17 Unit 1 – Introduction and Basic Concepts 12/33



Introduction

Brief Overview of the Course Content

Brief recapitulation

Elements of programming languages
Imperative/procedural paradigm

Paradigms and languages

Object-oriented: Ruby
Logic programming: Prolog
Functional: Haskell
Concurrent: Erlang

We will highlight strengths and weaknesses of each paradigm

This will be done in a practical way using concrete languages:

“Learning to program is like learning to swim. No amount of

theory is a substitute for diving into the pool.”

Joe Armstrong

PP 2016/17 Unit 1 – Introduction and Basic Concepts 13/33



Introduction

Books/Literature

The main book used for this lecture is

Bruce A. Tate: Seven Languages in Seven Weeks, Pragmatic Bookshelf,
2010

Additional material taken from

Maurizio Gabrielli, Simone Martini: Programming Languages: Principles and
Paradigms, Springer, 2010 (also available in Italian)
Allen B. Tucker, Robert E. Noonan: Programming Languages – Principles
and Paradigms (2nd ed.), McGraw-Hill, 2007

PP 2016/17 Unit 1 – Introduction and Basic Concepts 14/33



Basics of Programming Languages

Outline

1 Introduction

2 Basics of Programming Languages

PP 2016/17 Unit 1 – Introduction and Basic Concepts 15/33



Basics of Programming Languages

Elements of Programming Languages

Programming languages have many similarities with natural languages

e.g., they conform to rules for syntax and semantics, there are many
dialects, etc.

We are going to have a quick look at the following concepts

Compiled/Interpreted
Syntax
Semantics
Typing

PP 2016/17 Unit 1 – Introduction and Basic Concepts 16/33



Basics of Programming Languages

Compiled vs. Interpreted Languages

Compiled languages are translated into machine code that can be run
directly on a computer’s processor

Usually the whole program is translated before it is run

Interpreted languages are processed by a higher-level virtual machine

Usually a program is translated on the fly, i.e., a statement is translated and
then immediately executed

PP 2016/17 Unit 1 – Introduction and Basic Concepts 17/33



Basics of Programming Languages

Compiled Languages

Source code
↓

Lexical/Syntactical Analysis

↓

Type Checker

↓

Code generation/optimization

↓

Input → Computer → Output

PP 2016/17 Unit 1 – Introduction and Basic Concepts 18/33



Basics of Programming Languages

Interpreted Languages

Source code
↓

Lexical/Syntactical Analysis

↓

Type Checker

↓

Input → Interpreter → Output

↓ ↑

Computer

PP 2016/17 Unit 1 – Introduction and Basic Concepts 19/33



Basics of Programming Languages

Syntax/1

The syntax of a language describes how well-formed expressions should
look like

This includes putting together symbols to form valid tokens
As well as stringing together tokens to form valid expressions

For example, the following (English) sentence is not correct:

“Furiously slqxp ideas grn colorless.”

In contrast, the sentence

“Colorless green ideas sleep furiously.”

is syntactically correct (but it does not make any sense).

PP 2016/17 Unit 1 – Introduction and Basic Concepts 20/33



Basics of Programming Languages

Syntax/2

The syntax of a programming language is usually described by a formalism
called grammar

The following very simple grammar recognizes arithmetic expressions

<exp> ::= <exp> "+" <exp>

<exp> ::= <exp> "*" <exp>

<exp> ::= "(" <exp> ")"

<exp> ::= "a"

<exp> ::= "b"

<exp> ::= "c"

A program in this language is the product or the sum of ’a’, ’b’ and ’c’

e.g., a * (b + c)

More details on this in the Compiler module

PP 2016/17 Unit 1 – Introduction and Basic Concepts 21/33



Basics of Programming Languages

Semantics

Semantics is concerned with the meaning of (programming) languages

Usually much more difficult to define than syntax

A programmer should be able to anticipate what will happen before
actually running a program

An accurate description of the meaning of language constructs is needed

There are different ways of describing semantics of programming languages

Main approaches are:

Operational semantics
Axiomatic semantics
Denotational semantics

PP 2016/17 Unit 1 – Introduction and Basic Concepts 22/33



Basics of Programming Languages

Operational Semantics

In operational semantics the behavior is formally defined by an interpreter

This can be an abstract machine, a formal automaton, a transition system,
etc.
In the extreme case, a specific implementation on a certain machine (1950s:
first version of Fortran on an IBM 709)

PP 2016/17 Unit 1 – Introduction and Basic Concepts 23/33



Basics of Programming Languages

Axiomatic Semantics

Axiomatic semantics uses logical inference to define a language

An example is Hoare logic (named after the British computer scientist and
logician C. A. R. Hoare)

Hoare triple: {P}C{Q};

Describes how the execution of a piece of code changes the state of the

computation

If precondition P is true, then the execution of command C will lead to

postcondition Q

Hoare logic provides axioms and inference rules for all constructs of a simple
imperative programming language
Some examples of rules:

An axiomatic rule:
{P} skip {P}

Composition rule:
{P}S{Q},{Q}T{R}

{P}S ;T{R}

PP 2016/17 Unit 1 – Introduction and Basic Concepts 24/33



Basics of Programming Languages

Denotational Semantics

Denotational semantics defines the meaning of each phrase by translating it
into a phrase in another language

Clearly, assumes that we know the semantics of this target language

Target language is often a mathematical formalism

PP 2016/17 Unit 1 – Introduction and Basic Concepts 25/33



Basics of Programming Languages

Typing

A programming language needs to organize data in some way

The constructs and mechanisms to do this are called type system

Types help in

designing programs
checking correctness
determining storage requirements

PP 2016/17 Unit 1 – Introduction and Basic Concepts 26/33



Basics of Programming Languages

Type System

The type system of a language usually includes

a set of predefined data types, e.g., integer, string
a mechanism to create new types, e.g., typedef
mechanisms for controlling types:

equivalence rules: when are two types the same?

compatibility rules: when can one type be substituted for another?

inference rules: how is a type assigned to a complex expression?

rules for checking types, e.g., static vs. dynamic

PP 2016/17 Unit 1 – Introduction and Basic Concepts 27/33



Basics of Programming Languages

Data Types

A language is typed if it specifies for every operation to which data it can
be applied

Languages such as assembly or machine languages can be untyped

Assembly language: all data is represented by bitstrings (to which all
operations can be applied)

Languages such as markup or scripting languages can have very few types

XML with DTDs: elements can contain other elements or parsed character
data (#PCDATA)

PP 2016/17 Unit 1 – Introduction and Basic Concepts 28/33



Basics of Programming Languages

Strong and Weak Typing

There is a distinction between weak typing and strong typing

In strongly typed languages, applying the wrong operation to typed data
will raise an error

Languages supporting strong typing are also called type-safe

Weakly typed languages perform implicit type conversion if data do not
prefectly match, i.e., one type can be interpreted as another

e.g., the string “3.4028E+12” representing a number might be treated as a
number
May produce unpredictable results

PP 2016/17 Unit 1 – Introduction and Basic Concepts 29/33



Basics of Programming Languages

Type Casting

In some languages it is possible to
bypass implicit type conversion
done by the compiler

Type casting is an explicit type
conversion defined within a
program

Example of type casting

double da = 3.3;

double db = 3.3;

double dc = 3.4;

int result1 = (int)da + (int)db + (int)dc; //result == 9

Implicit type conversion gives a different result (conversion is after addition)

int result2 = da + db + dc; //result == 10

PP 2016/17 Unit 1 – Introduction and Basic Concepts 30/33



Basics of Programming Languages

Static vs. Dynamic Type Checking/1

We also distinguish between languages depending on when they check
typing constraints

In static typing we check the types and their constraints before executing
the program

Can be done during the compilation of a program

When using dynamic typing, we check the typing during program execution

PP 2016/17 Unit 1 – Introduction and Basic Concepts 31/33



Basics of Programming Languages

Static vs. Dynamic Type Checking/2

Although some people feel quite strongly about this, each approach has
pros and cons

Static typing:

+ less error-prone
- sometimes too
restrictive

Dynamic typing:

+ more flexible
- harder to debug (if
things go wrong)

PP 2016/17 Unit 1 – Introduction and Basic Concepts 32/33



Basics of Programming Languages

Summary

Programming languages are artificial languages designed to communicate
with computers

Provide most powerful human-computer interface

There are thousands of different languages, which are more or less
appropriate for different problems

Can be classified according to programming paradigms and abstraction level

There are many similarities to natural languages, e.g., syntax, semantics

Syntax determines whether a programm is well-formed
Semantic determines the meaning of lanugage concepts/programs, and can
be defined in different ways (operational, aximoatic, denotational semantics)

Type system in a programming language is needed to organize data and
helps to check the correctness of programs

Different forms of type checking, all having pros and cons

Weak typing vs. strong typing
Static vs. dynamic type checking
Type casting

PP 2016/17 Unit 1 – Introduction and Basic Concepts 33/33


	Introduction
	Basics of Programming Languages

