
Programming Paradigms Exercise 4 - Prolog 3

Theodoros Chondrogiannis

2nd Semester 2016/17

1. In the previous exercise you implemented a program to compute the Nth
Fibonacci number:

fib(1,1).

fib(2,1).

fib(N,F) :-

N > 2,

N2 is N-2, N1 is N-1,

fib(N2,F2), fib(N1,F1),

F is F1+F2.

For large values, this version takes too long. Use accumulators to im-
plement a faster version. Why is the version with accumulators so much
faster?

2. In the previous exercise you also implemented a program to find the min-
imal element of a list:

minElem([Min], Min).

minElem([Head|Tail], Min ) :-

minElem(Tail, TailMin),

Head =< TailMin,

Min is Head.

minElem([Head|Tail], Min) :-

minElem(Tail, TailMin),

Head > TailMin,

Min is TailMin.

Implement the same predicate minElem which return the minimal element
of a list using accumulators.

3. The fictitious country of Elbonia issues stamps in the denominations of
15¢, 7¢, 3¢, and 1¢. Write a Prolog program that gets as input the total
postage You have to pay and outputs how many stamps of each denomi-
nation you need to reach this total.

1



4. A directed graph can be represented in Prolog by listing the edges between
nodes as facts. An edge from node a to node b would be represented by

edge(a,b).

Define a predicate path(S,T,P) that returns true if there is a simple
(acyclic) path from S to T. Otherwise it returns false. (hint: you can use
the member/2 predicate of Prolog as member(X, [One]) which returns
true if the given list contains element X.)

2


