
Database Management Systems 2010/11

– Chapter 8: Recovery System –

J. Gamper

◮ Atomicity, Durability, and Recovery System

◮ Log-Based Recovery

◮ Deferred DB Modifications

◮ Immediate DB Modifications

◮ Checkpoints

◮ Shadow Paging

◮ Recovery with Concurrent Transactions

These slides were developed by:
– Michael Böhlen, University of Zurich, Switzerland
– Johann Gamper, University of Bozen-Bolzano, Italy

DMS 2010/11 J. Gamper 1/25



Atomicity and Durability

◮ Recall the atomicity and durability properties of transactions
◮ A transaction either completes fully with a permanent result (i.e.,

committed transaction)
◮ or does not happen at all and has no effect on the DB (i.e.,

aborted/rolled-back transaction if some error occurs)

◮ Transactions are aborted or rolled-back if some error occurs.

DMS 2010/11 J. Gamper 2/25



Atomicity and Durability . . .

◮ Failure types:
◮ Transaction failure

◮ Logical errors: Do not allow a transaction to continue due to some internal
condition, e.g., bad input, overflow, resource limits.

◮ System errors: Require a DBMS to terminate an active transaction due to,
e.g., a deadlock. Later re-execution is possible.

◮ System crash: A power failure or other HW/SW failure causes the system
to crash; the content of volatile storage is lost.

◮ Disk failures: A head crash or similar disk failure destroys all or part of disk
(stable) storage.

DMS 2010/11 J. Gamper 3/25



Recovery System

◮ Recovery system: Ensures atomicity and durability of transactions in the
presence of failures (and concurrent transactions).

◮ Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure enough
information exists to recover from failures.

2. Actions taken after a failure to recover the DB contents to a state that
ensures atomicity, consistency and durability.

DMS 2010/11 J. Gamper 4/25



Recovery System . . .

◮ Problems of recovery procedures
◮ The DBMS does not know which instruction was last executed.
◮ Buffers may not have been written to the disk yet.
◮ Observable (external) writes cannot be undone, e.g., writes to the screen or

the printer. Possible solutions include:
◮ Delay external writes until the end of the transaction (if possible).
◮ bid external writes.
◮ Relax atomicity.

DMS 2010/11 J. Gamper 5/25



Recovery System . . .

◮ To ensure atomicity the DBMS must first output information describing the
modifications to stable storage without modifying the DB itself.

◮ Two approaches are studied next
◮ Log-based recovery
◮ Shadow paging

◮ In the following we also assume that transactions run serially.

DMS 2010/11 J. Gamper 6/25



Log-Based Recovery

◮ A log is the most popular structure for recording DB modifications on
stable storage

◮ Consists of a sequence of log records that record all the update activities in
the DB

◮ Each log record describes a significant event during transaction processing

◮ Types of log records
◮ 〈Ti , start〉: if transaction Ti has started
◮ 〈Ti , Xj , V1, V2〉: before Ti executes a write(Xj), where V1 is the old value

before the write and V2 is the new value after the write
◮ 〈Ti , commit〉: if Ti has committed
◮ 〈Ti , abort〉: if Ti has aborted
◮ 〈checkpoint〉

DMS 2010/11 J. Gamper 7/25



Log-Based Recovery . . .

◮ A log allows us to
◮ write DB modifications to the disk
◮ undo DB modifications (using the old value)
◮ redo DB modifications (using the new value)

◮ Properties of logs
◮ Logs must be placed on stable storage (before data)
◮ Logs are large because they record all DB activities
◮ Checkpoints are used to reduce the size of logs

◮ Transactions that committed before a checkpoint don’t have to be redone

DMS 2010/11 J. Gamper 8/25



Log-Based Recovery . . .

◮ When a failure occurs the following two operations can be executed:
◮ Undo: restore DB to state prior to execution

◮ undo(Ti ) restores the value of all data items updated by transaction Ti to
the old values.

◮ undo must be idempotent, i.e., executing it several times must be equivalent
to executing it once

◮ Redo: perform the changes to the DB over again

◮ redo(Ti ) (re)executes all actions of transaction Ti , i.e., sets the value of all
data items updated by Ti to the new values.

◮ redo must be idempotent.

◮ Two approaches using logs
◮ Deferred database modifications
◮ Immediate database modifications

DMS 2010/11 J. Gamper 9/25



Deferred DB Modifications

◮ Deferred DB Modification Scheme: All DB modifications are recorded
in the log but are deferred until the transaction is ready to commit (i.e.,
after partial commit)

◮ A transaction is ready to commit if the commit log-record has been written
to stable storage, i.e., when transitioning to the committed state

◮ This schema is also known as NOUNDO/REDO

DMS 2010/11 J. Gamper 10/25



Deferred DB Modifications . . .

◮ Actions after a rolled back transaction
◮ The log is ignored; nothing has to be undone

◮ Actions after a crash
◮ A transaction Ti needs to be redone if and only a 〈Ti , start〉 and a

〈Ti , commit〉 record is in the log
◮ To redo transactions the log has to be scanned forward.

◮ The old value in the log record is not needed for deferred DB updates.

DMS 2010/11 J. Gamper 11/25



Deferred DB Modifications . . .
◮ Example: Transactions T0 and T1 (T0 executes before T1)

T0 : read(A) T1 : read(C)
A = A − 50 C = C − 100
write(A) write(C)
read(B)
B = B + 50
write(B)

◮ Possible order of actual outputs to the log and the DB

Log DB

〈T0, start〉
〈T0, A, 950〉
〈T0, B, 2050〉
〈T0, commit〉

A = 950
B = 2050

〈T1, start〉
〈T1, C , 600〉
〈T1, commit〉

C = 600

DMS 2010/11 J. Gamper 12/25



Deferred DB Modifications . . .

◮ Example (contd.): Consider the log after some system crashes and the
corresponding recovery actions

(a) No redo actions need to be taken

(b) redo(T0) must be performed since 〈T0, commit〉 is present

(c) redo(T0) must be performed followed by redo(T1) since 〈T0, commit〉 and
〈T1, commit〉 are present

DMS 2010/11 J. Gamper 13/25



Immediate DB Modifications

◮ Immediate DB Modification Scheme: DB modifications can be written
to disk before a transaction commits. However, before doing so the
modifications have to be written to the log first.

◮ Known as UNDO/REDO.

◮ Actions after a rolled back transaction
◮ The effects on the DB have to be undone.

◮ Actions after a crash
◮ Transaction Ti needs to be undone if the log contains a 〈Ti , start〉 record,

but does not contain a 〈T1, commit〉 record
◮ for undo the log must be scanned backwards

◮ Transaction Ti needs to be redone if the log contains the record 〈T1, start〉
and 〈T1, commit〉

◮ for redo the log must be scanned forwards

◮ undo must be done before redo

DMS 2010/11 J. Gamper 14/25



Immediate DB Modifications . . .

◮ Example (contd.): Consider the log after some system crashes and the
corresponding recovery actions

(a) undo(T0): B is restored to 2000 and A to 1000

(b) undo(T1) and redo(T0): C is restored to 700, and then A and B are set to
950 and 2050, respectively

(c) undo(T0) and redo(T1): A and B are set to 950 and 2050, respectively;
then C is set to 600

DMS 2010/11 J. Gamper 15/25



Checkpoints

◮ Problems in recovery procedure
◮ Searching the entire log is time-consuming
◮ We might unnecessarily redo transactions which have already output their

updates to the DB

◮ Streamline recovery procedure by periodically performing checkpointing

1. Output all log records currently residing in main memory onto stable storage.
2. Output all modified buffer blocks to the disk.
3. Write a log record 〈checkpoint〉 onto stable storage

◮ Any transaction Ti with a 〈Ti , commit〉 record in the log need not to be
considered after a system crash

DMS 2010/11 J. Gamper 16/25



Checkpoints . . .

◮ Recovery procedure: Only the most recent transaction Ti that started
before the checkpoint, and transactions that started after Ti need to be
considered.

1. Scan backwards from end of log to find the most recent 〈checkpoint〉 record
2. Continue scanning backwards till a record 〈Ti , start〉 is found.
3. Need only consider the part of log following 〈Ti , start〉 record. Earlier part

of log can be ignored and can be erased.
4. Scan forward the log (starting from Ti ).
5. For all transactions Tj with no 〈Tj , commit〉 record, execute undo(Tj).

◮ Done only in case of immediate modification

6. For all transactions Tj with 〈Tj , commit〉 record, execute redo(Tj).

DMS 2010/11 J. Gamper 17/25



Checkpoints . . .

◮ Example:

◮ T1 can be ignored (updates already output to disk due to checkpoint)

◮ T2 and T3 redone.

◮ T4 undone

DMS 2010/11 J. Gamper 18/25



Shadow Paging

◮ Shadow paging maintains two page tables during the lifetime of a
transaction (page = block)

◮ Current page table, which is typically maintained in main memory
◮ Shadow page table, which is stored in non-volatile storage, such that state

of the DB prior to transaction execution may be recovered; the shadow page
table is never modified

◮ Initially, both tables are identical

◮ Useful if transactions execute serially

◮ Transaction performs a write(X ) for the first time
◮ A copy of the page containing X is made onto an unused page
◮ The current page table is then made to point to the copy
◮ The update is performed on the copy

DMS 2010/11 J. Gamper 19/25



Shadow Paging . . .

◮ Example: Shadow and current page tables after a write to page 4

DMS 2010/11 J. Gamper 20/25



Shadow Paging . . .

◮ Transaction commits
◮ Flush all modified pages in main memory to disk
◮ Output current page table to disk
◮ Make the current page table the new shadow page table

◮ Keep a pointer to the shadow page table at a fixed location
◮ Update the pointer to the shadow page table to point to the current page

table on disk

◮ Once the pointer to the shadow page table has been written, the transaction
is committed

DMS 2010/11 J. Gamper 21/25



Shadow Paging . . .

◮ Advantages of shadow-paging over log-based recovery

◮ No overhead of writing log records
◮ Recovery is trivial

◮ Basically, no recovery is needed after a crash
◮ New transaction can start right away, using the shadow page table

◮ Disadvantages
◮ Copying the entire page table is very expensive

◮ Can be reduced by using a page table structured like a B+-tree

◮ Commit overhead is high
◮ Need to flush every updated page and the page table

◮ Data gets fragmented (on disk)
◮ After every transaction completion garbage collection of old pages
◮ Hard to extend for concurrent transactions

DMS 2010/11 J. Gamper 22/25



Recovery with Concurrent Transactions

◮ Extension of log-based recovery scheme to concurrent transactions

◮ Assume concurrency using strict two-phase locking

◮ X-locks are hold until the end of the transaction (avoids cascading)

◮ Logging is done as in the case for serial execution

◮ Checkpointing is slightly changed
◮ Checkpoint log record is now of the form 〈checkpoint, L〉, where L is the list

of transactions active at the time of the checkpoint

DMS 2010/11 J. Gamper 23/25



Recovery with Concurrent Transactions . . .

◮ Recovery from a crash is a two-step process:

1. Step 1: Construct an undo-list and redo-list
2. Step 2: Perform the recovery

◮ Step 1: Construct an undo-list and redo-list
◮ Initialize undo-list and redo-list to empty
◮ Scan the log backwards from the end, stopping when the first

〈checkpoint, L〉 record is found.
For each record found during the backward scan:

◮ if the record is 〈Ti , commit〉: add Ti to redo-list
◮ if the record is 〈Ti , start〉: if Ti is not in redo-list, add Ti to undo-list

◮ For every Ti in L, if Ti is not in redo-list, add Ti to undo-list

DMS 2010/11 J. Gamper 24/25



Recovery with Concurrent Transactions . . .

◮ At this point undo-list consists of incomplete transactions which must be
undone, and redo-list consists of finished transactions that must be redone.

◮ Step 2: Perform the recovery
◮ Scan log backwards from most recent record, stopping when 〈Ti , start〉

records have been encountered for every Ti in undolist.

◮ During the scan, perform undo for each log record that belongs to a
transaction in undo-list.

◮ Locate the most recent 〈checkpoint, L〉 record.
◮ Scan log forwards from the 〈checkpoint, L〉 record till the end of the log.

◮ During the scan, perform redo for each log record that belongs to a
transaction on redo-list

DMS 2010/11 J. Gamper 25/25


