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Lock-Based Protocols

◮ One way to ensure serializability is to require that data items be accessed
in a mutually exclusive manner

◮ More precisely, while one transaction is accessing a data item, no other
transaction can modify it.

◮ Lock is the most common mechanism to implement this requirement to
control concurrent access to a data item.

◮ Data items can be locked in two modes:
◮ exclusive mode (X): Data item can be both read as well as written. X-lock

is requested using lock-X(A) instruction.
◮ shared mode (S): Data item can only be read. S-lock is requested using

lock-S(A) instruction.

◮ Locks can be released: U-lock(A)

◮ Lock requests are made to concurrency-control manager.
◮ Transaction can proceed only after request is granted.
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Lock-Based Protocols . . .

◮ Locking protocol: A set of rules followed by all transactions while
requesting and releasing locks.

◮ Locking protocols restrict the set of possible schedules.

◮ Ensure serializable schedules by delaying transactions that might violate
serializability.
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Lock-Based Protocols . . .

◮ Lock-compatibility matrix tells whether two locks are compatible or not.
◮ Any number of transactions can hold shared locks on a data item
◮ If any transaction holds an exclusive lock on a data item no other

transaction may hold any lock on that item.

Lock 2
S X

Lock 1 S true false
X false false

◮ Locking Rules/Protocol
◮ A transaction may be granted a lock on an item if the requested lock is

compatible with locks already held on the item by other transactions.
◮ If a lock cannot be granted, the requesting transaction is made to wait till

all incompatible locks held by other transactions have been released. The
lock is then granted.
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Pitfalls of Lock-Based Protocols

◮ Too early unlocking can lead to non-serializable schedules.

◮ Too late unlocking can lead to deadlocks.

◮ Example:
◮ Transaction T1 transfers $50 from account B to account A.
◮ Transaction T2 displays the total amount of money in accounts A and B,

that is, the sum of A + B.
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Pitfalls of Lock-Based Protocols . . .

◮ Example (contd.): Early unlocking can
cause non-serializable schedules, and
therefore potentially incorrect results.

◮ e.g., A = $100, B = $200
◮ ⇒ display A + B shows $250
◮ <T1, T2> and <T2, T1> display $300

T1 T2

1. X-lock(B)
2. read B
3. B := B-50
4. write B
5. U-lock(B)
6. S-lock(A)
7. read A
8. U-lock(A)
9. S-lock(B)
10. read B
11. U-lock(B)
12. display A + B
13. X-lock(A)
14. read A
15. A := A+50
16. write A
17. U-lock(A)
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Pitfalls of Lock-Based Protocols . . .

◮ Example (contd.): Late unlocking can lead to deadlocks
◮ Neither T1 nor T2 can make progress:

◮ executing lock-S(B) causes T2 to wait for T1 to release its lock on B.
◮ executing lock-X (A) causes T1 to wait for T2 to release its lock on A.

◮ To handle a deadlock one of T1 or T2 must be rolled back and its locks
released.

T1 T2

1. X-lock(B)
2. read B
3. B := B-50
4. write B
5. S-lock(A)
6. read (A)
7. S-lock(B)
8. X-lock(A)
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Two-Phase Locking Protocol

◮ Two-Phase Locking Protocol: A locking protocol that ensures
conflict-serializable schedules. It works in two phases:

◮ Phase 1: Growing Phase

◮ transaction may obtain locks
◮ transaction may not release locks

◮ Phase 2: Shrinking Phase

◮ transaction may release locks
◮ transaction may not obtain locks

◮ Lock point: Transition point form phase 1 into phase 2, i.e., when the first
lock is released.
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Two-Phase Locking Protocol . . .
◮ Example: Schedule with locking instructions following the Two-Phase

Locking Protocol

T1 T2

1. X-lock(B)
2. read B
3. B := B-50
4. write B
5. X-lock(A)
6. U-lock(B)
7. S-lock(B)
8. read(B)
9. read(A)
10. A := A+50
11. write(A)
12. unlock(A)
13. S-lock(A)
14. read(A)
15. display A + B
16. unlock(B)
17. unlock(A)
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Two-Phase Locking Protocol . . .

◮ Properties of the Two-Phase Locking Protocol
◮ Ensures serializability

◮ It can be shown that the transactions can be serialized in the order of their
lock points (i.e., the point where a transaction acquired its final lock).

◮ Does not ensure freedom from deadlocks
◮ Cascading roll-back is possible

◮ Modifications of the two-phase locking protocol
◮ Strict two-phase locking

◮ A transaction must hold all its exclusive locks till it commits/aborts
◮ Avoids cascading roll-back

◮ Rigorous two-phase locking
◮ All locks are held till commit/abort.
◮ Transactions can be serialized in the order in which they commit.
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Two-Phase Locking Protocol . . .

◮ Refinement the two-phase locking protocol with lock conversions
◮ Phase 1:

◮ can acquire a lock-S on item
◮ can acquire a lock-X on item
◮ can convert a lock-S to a lock-X (upgrade)

◮ Phase 2:
◮ can release a lock-S
◮ can release a lock-X
◮ can convert a lock-X to a lock-S (downgrade)

◮ Ensures serializability

◮ Strict and rigorous two-phase locking (with lock conversions) are used
extensively in DBMS.
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Automatic Acquisition of Locks

◮ A transaction Ti issues the standard read/write instruction without explicit
locking calls (by the programmer).

◮ The operation read(D) is processed as follows:

if Ti has a lock on D then
read(D);

else
If necessary wait until no other transaction has a lock-X on D;
Grant Ti a lock-S on D;
read(D);

end
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Automatic Acquisition of Locks . . .

◮ The operation write(D) is processed as:

if Ti has a lock-X on D then
write(D);

else
If necessary wait until no other transaction has any lock on D;
if Ti has a lock-S on D then

Upgrade lock on D to lock-X;
else

Grant Ti a lock-X on D;
end
write(D);

end

◮ All locks are released after commit or abort
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Implementation of Locking

◮ A lock manager can be implemented as a separate process to which
transactions send lock and unlock requests.

◮ The lock manager replies to a lock request by sending a lock grant message
(or a message asking the transaction to roll back, in case of a deadlock).

◮ The requesting transaction waits until its request is answered.

◮ The lock manager maintains a data structure called a lock table to record
granted locks and pending requests.
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Lock-Based Protocols . . .
◮ Lock table

◮ Implemented as in-memory hash table
indexed on the data item being locked

◮ Black rectangles indicate granted locks.
◮ White rectangles indicate waiting

requests.
◮ Records also the type of lock

granted/requested.

◮ Processing of requests:
◮ New request is added to the end of the

queue of requests for the data item,
and granted if it is compatible with all
earlier locks.

◮ Unlock requests result in the request
being deleted, and later requests are
checked to see if they can now be
granted.

◮ If transaction aborts, all waiting or
granted requests of the transaction are
deleted.
(Index on transaction to implement this
efficiently.)
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Graph-Based Protocols

◮ Graph-based protocols
◮ Impose a partial order (→) on the set D = {d1, d2, ..., dh} of all data items.
◮ If di → dj then any transaction accessing both di and dj must access di

before accessing dj.
◮ Implies that the set D may now be viewed as a directed acyclic graph, called

a database graph.

◮ Graph-based protocols are an alternative to two-phase locking and ensure
conflict serializability.
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Graph-Based Protocols . . .

◮ Tree-protocol: A simple kind of graph-based protocol that works as
follows:

◮ Only exclusive locks lock-X are allowed.
◮ The first lock by a transaction Ti may be

on any data item.
◮ Subsequently, a data item Q can be

locked by Ti only if the parent of Q is
currently locked by Ti .

◮ Data items may be unlocked at any time.
◮ A data item that has been locked and

unlocked by Ti cannot subsequently be
relocked by Ti .
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Graph-Based Protocols . . .

◮ Example: The following 4 transactions follow the treeprotocol on the
database graph below.

◮ T10: lock-X(B); lock-X(E); lock-X(D); unlock(B); unlock(E); lock- X(G);
unlock(D); unlock(G);

◮ T11: lock-X(D); lock-X(H); unlock(D); unlock(H);
◮ T12: lock-X(B); lock-X(E); unlock(E); unlock(B);
◮ T13: lock-X(D); lock-X(H); unlock(D); unlock(H);
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Graph-Based Protocols . . .

◮ Example: (contd.) One possible schedule

T10 T11 T12 T13
lock-X(B)

lock-X(D)
lock-X(H)
unlock(D)

lock-X(E)
lock-X(D)
unlock(B)
unlock(E)

lock-X(B)
lock-X(E)

unlock(H)
lock-X(G)
unlock(D)

lock-X(D)
lock-X(H)
unlock(D)
unlock(H)

unlock(E)
unlock(B)

unlock(G)
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Graph-Based Protocols . . .

◮ The tree protocol:
◮ ensures conflict serializability;
◮ ensures freedom from deadlock;
◮ the abort of a transaction might lead to cascading rollbacks;

◮ Unlocking may occur earlier in the tree-locking protocol than in the
two-phase locking protocol.

◮ shorter waiting times and increase in concurrency

◮ However, in the tree-protocol a transaction may have to lock data items
that it does not access.

◮ increased locking overhead and additional waiting time
◮ potential decrease in concurrency

◮ Schedules not possible under two-phase locking are possible under tree
protocol and vice versa.
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Timestamp-Based Protocols

◮ Timestamp-based protocols
◮ Each transaction gets a timestamp when it enters the system.
◮ If an old transaction Ti has timestamp TS(Ti ), a new transaction Tj is

assigned timestamp TS(Tj) such that TS(Ti ) < TS(Tj).
◮ The protocol manages concurrent execution such that the timestamps

determine the serializability order as follows:
◮ If TS(Ti ) < TS(Tj ), the produced schedule is equivalent to the serial

schedule 〈Ti , Tj〉

◮ The protocol maintains for each data item Q two timestamp values:
◮ W-timestamp(Q) is the largest time-stamp of any transaction that

executed write(Q) successfully
◮ R-timestamp(Q) is the largest time-stamp of any transaction that executed

read(Q) successfully.
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Timestamp-Based Protocols . . .

◮ Timestamp ordering protocol
◮ Is a specific timestamp-based protocol that ensures that conflicting read

and write operations are executed in timestamp order by imposing the
following rules.

◮ Transaction Ti issues a read(Q):
◮ If TS(Ti ) < W − timestamp(Q), then Ti needs to read a value of Q that was

already overwritten. The read operation is rejected, and Ti is rolled back.
◮ If TS(Ti ) ≥ W − timestamp(Q), then the read operation is executed, and

Rtimestamp( Q) is set to the maximum of R-timestamp(Q) and TS(Ti ).

◮ Transaction Ti issues write(Q):
◮ If TS(Ti ) < R − timestamp(Q), then the value of Q that Ti is producing was

needed previously, and the system assumed that that value would never be
produced. The write operation is rejected, and Ti is rolled back.

◮ If TS(Ti ) < W − timestamp(Q), then Ti is attempting to write an obsolete
value of Q. The write operation is rejected, and Ti is rolled back.

◮ Otherwise, the write op. is executed, and W-timestamp(Q) is set to TS(Ti ).
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Timestamp-Based Protocols . . .

◮ Example: The following schedule is possible under the timestamp ordering
protocol.

◮ Since we assume TS(T14) < TS(T15), the schedule must be conflict
equivalent to the schedule 〈T14, T15〉

T14 T15

read(B)
read(B)
B := B - 50
write(B)

read(A)
read(A)

display(A+B)
A := A + 50
write(A)
display(A+B)
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Timestamp-Based Protocols . . .

◮ Properties of the timestamp-ordering protocol
◮ Guarantees conflict serializability, since conflicting operations are processed

in timestamp order.
◮ All arcs in the precedence graph are of the following form

◮ Thus, there will be no cycles in the precedence graph

◮ Ensures freedom from deadlock as no transaction ever waits.
◮ The schedule may not be cascade-free and may not even be recoverable.
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Timestamp-Based Protocols . . .

◮ Recoverability and cascade freedom in the timestamp-ordering protocol
◮ Suppose Ti aborts, but Tj has read a data item written by Ti

◮ Then Tj must abort; if Tj had been allowed to commit earlier, the schedule
is not recoverable.

◮ Further, any transaction that has read a data item written by Tj must abort,
which might lead to a cascading rollback.

◮ Solution:
◮ All writes are performed at the end of a transaction and they form an

atomic action in the sense that while the writes are in progress no
transaction may access any of the data items that have been written.

◮ A transaction that aborts is restarted with a new timestamp.
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Multiple Granularity

◮ Instead of locks on individual data items, sometimes it is advantageous to
group several data items and to treat them as one individual
synchronization unit (e.g. if a transaction accesses the entire DB).

◮ Define a hierarchy of data granularities of different size, where the small
granularities are nested within larger ones.

◮ Can be represented graphically as a tree

◮ When a transaction locks a node in the tree explicitly, it implicitly locks all
the node’s descendents in the same mode.
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Multiple Granularity . . .

◮ Example: Graphical representation of a hierarchy of granularities
◮ The highest level is the entire database.
◮ The levels below are of type area, file and record in that order.

◮ Granularity of locking (= level in tree where locking is done):
◮ fine granularity (lower in tree): high concurrency, high locking overhead
◮ coarse granularity (higher in tree): low locking overhead, low concurrency
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Multiversion Protocols

◮ Concurrency control protocols studied thus far ensure serializability by
either delaying an operation or aborting the transaction.

◮ Multiversion protocols keep old versions of data items to increase
concurrency.

◮ Each successful write(Q) creates a new version of Q.
◮ Timestamps are used to label versions.

◮ When a read(Q) operation is issued, select an appropriate version of Q
based on the timestamp of the transaction.

◮ Reads never have to wait as an appropriate version is available.

◮ Two types of multiversion protocols
◮ Multiversion timestamp ordering
◮ Multiversion two-phase locking
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Multiversion Timestamp Ordering

◮ Multiversion timestamp ordering protocol
◮ For each data item Q a sequence of versions 〈Q1, Q2, ...., Qm〉 is maintained.
◮ Each version Qk contains 3 data fields:

◮ Content – value of version Qk .
◮ W-timestamp(Qk ) – timestamp of the transaction that created (wrote)

version Qk
◮ R-timestamp(Qk ) – largest timestamp of transaction that successfully read

version Qk

◮ When a transaction Ti creates a new version Qk of Q, the W-timestamp
and R-timestamp of Qk are initialized to TS(Ti ).

◮ R-timestamp of Qk is updated whenever a transaction Tj reads Qk , and
TS(Tj) > R-timestamp(Qk).
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Multiversion Timestamp Ordering . . .

◮ The following multiversion timestamp-ordering protocol ensures
serializability.

1. If transaction Ti issues a read(Q), then the value returned is the content of
version Qk , which is the version of Q with the largest write timestamp less
than or equal to TS(Ti )

2. If transaction Ti issues a write(Q):
◮ If TS(Ti ) < R-timestamp(Qk), then transaction Ti is rolled back
◮ Otherwise, if TS(Ti ) = W-timestamp(Qk), the contents of Qk are

overwritten.
◮ Otherwise a new version of Q is created.
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Multiversion Timestamp Ordering . . .

◮ Properties of the multiversion timestamp-ordering protocol

◮ reads always succeed and never have to wait

◮ A transaction reads the most recent version that comes before it in time.
◮ In a typical DBMS reading is a more frequent operation than writing, hence

this advantage might be significant.

◮ write: A transaction is aborted if it is “too late”in doing a write

◮ i.e., a write by Ti is rejected if another transaction Tj that should read T ′

i s

write has already read a version created by a transaction older than Ti .

◮ Disadvantages
◮ Reading of a data item also requires the updating of the R-timestamp,

resulting in two disk accesses rather than one.
◮ The conflicts between transactions are resolved through rollbacks rather

than through waits.
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Deadlock Handling

◮ Consider the following two transactions:

T1: write (X) T2: write(Y)
write(Y) write(X)

◮ Schedule with a deadlock

T1 T2

lock-X on X
write (X)

lock-X on Y
write (Y)
wait for lock-X on X

wait for lock-X on Y
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Deadlock Handling . . .

◮ Deadlock: A system is in a deadlock state if there is a set of transactions
such that every transaction in the set is waiting for another transaction in
the set.

◮ A deadlock has to be resolved by rolling back some of the transactions
involved in the deadlock.

◮ Deadlocks are addressed in two ways:
◮ Deadlock prevention protocols are used
◮ Deadlocks are detected and resolved
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Deadlock Prevention Protocols

◮ Deadlock prevention protocols ensure that the system will never enter
into a deadlock state.

◮ Some prevention strategies:
◮ Require that each transaction locks all its data items before it begins

execution (pre-declaration).
◮ Difficult to know in advance
◮ Data-item utilization may be very low

◮ Impose partial ordering of all data items and require that a transaction can
lock data items only in the order specified by the partial order (graph-based
protocol).

◮ Tree protocol
◮ Data items have to be known in advance
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Deadlock Prevention Protocols . . .

◮ Deadlock prevention protocols using transaction timestamps.
◮ Wait-die scheme
◮ Wound-wait scheme

◮ Wait-die scheme - non-preemptive technique
◮ Older transaction may wait for younger one to release data item. Younger

transactions never wait for older ones; they are rolled back instead (dies)

◮ Example: Transactions T22,T23,T24 with timestamps 5, 10, 15
◮ T22 requests data item held by T23 : T22 will wait
◮ T24 requests data item held by T23 : T24 will be rolled back.

◮ A transaction may die several times before acquiring the needed data item
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Deadlock Prevention Protocols . . .

◮ Wound-wait scheme - preemptive technique
◮ Older transaction wounds (forces rollback) of younger transaction instead of

waiting for it. Younger transactions may wait for older ones

◮ Example: Transactions T22,T23,T24 with timestamps 5, 10, 15
◮ T22 requests data item held by T23 : T23 will be rolled back
◮ T24 requests data item held by T23 : T24 will wait.

◮ May be fewer rollbacks than wait-die scheme.

◮ Both in wait-die and in wound-wait protocols, a rolled-back transaction is
restarted with its original timestamp. Older transactions thus have
precedence over newer ones, and starvation is hence avoided.
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Deadlock Prevention Protocols . . .

◮ Timeout-based protocols
◮ A transaction waits for a lock only for a specified amount of time. After

that, the wait times out and the transaction is rolled back.
◮ Thus, deadlocks are not possible.
◮ Simple to implement; but starvation is possible. Also difficult to determine

good value of the timeout interval.
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Deadlock Detection and Recovery

◮ Deadlocks can be described as a wait-for graph, which consists of a pair
G = (V ,E )

◮ V is a set of vertices representing all the transactions
◮ E is a set of edges; each element is an ordered pair Ti → Tj .

◮ If Ti → Tj is in E, there is a directed edge from Ti to Tj , implying that Ti

is waiting for Tj to release a data item.

◮ If Ti requests a data item being held by Tj , edge Ti → Tj is inserted in the
wait-for graph. This edge is removed when Tj is no longer holding a data
item needed by Ti .

◮ The system is in a deadlock state if and only if the wait-for graph has a
cycle.

◮ A deadlock-detection algorithm must be invoked periodically to look for
cycles.
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Deadlock Detection and Recovery . . .

◮ Wait-for graph without a cycle ◮ Wait-for graph with a cycle
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Deadlock Detection and Recovery . . .

◮ When a deadlock is detected, the system must recover from the deadlock.

◮ The most common solution is to roll back one or more transactions to
break the deadlock. Three actions are required:

1. Selection of a victim: Select that transaction(s) to roll back that will incur
minimum cost.

2. Rollback: Determine how far to roll back transaction
◮ Total rollback: Abort the transaction and then restart it.
◮ More effective to roll back transaction only as far as necessary to break

deadlock.

3. Check Starvation: happens if same transaction is always chosen as victim.

◮ Include the number of rollbacks in the cost factor to avoid starvation
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