Database Management Systems 2010/11

— Chapter 7: Concurrency Control —

J. Gamper

Lock-Based Protocols
Graph-Based Protocols
Timestamp-Based Protocols
Multiple Granularity
Multiversion Protocols
Deadlock Handling

vV v v v v Yy

These slides were developed by:
— Michael Bohlen, University of Zurich, Switzerland
— Johann Gamper, University of Bozen-Bolzano, Italy

DMS 2010/11 J. Gamper 1/40

Lock-Based Protocols

» One way to ensure serializability is to require that data items be accessed
in a mutually exclusive manner

> More precisely, while one transaction is accessing a data item, no other
transaction can modify it.
» Lock is the most common mechanism to implement this requirement to
control concurrent access to a data item.
» Data items can be locked in two modes:

> exclusive mode (X): Data item can be both read as well as written. X-lock
is requested using lock-X(A) instruction.

> shared mode (S): Data item can only be read. S-lock is requested using
lock-S(A) instruction.

> Locks can be released: U-lock(A)

> Lock requests are made to concurrency-control manager.
» Transaction can proceed only after request is granted.

DMS 2010/11 J. Gamper 2/40

Lock-Based Protocols ...

» Locking protocol: A set of rules followed by all transactions while
requesting and releasing locks.

» Locking protocols restrict the set of possible schedules.

> Ensure serializable schedules by delaying transactions that might violate
serializability.

DMS 2010/11 J. Gamper 3/40

Lock-Based Protocols ...

» Lock-compatibility matrix tells whether two locks are compatible or not.

> Any number of transactions can hold shared locks on a data item
> |If any transaction holds an exclusive lock on a data item no other
transaction may hold any lock on that item.

Lock 2
S X
Lock 1 true false

X 0

false false

» Locking Rules/Protocol

> A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions.

> If a lock cannot be granted, the requesting transaction is made to wait till
all incompatible locks held by other transactions have been released. The
lock is then granted.

DMS 2010/11 J. Gamper 4/40

Pitfalls of Lock-Based Protocols

» Too early unlocking can lead to non-serializable schedules.
» Too late unlocking can lead to deadlocks.
» Example:

» Transaction T1 transfers $50 from account B to account A.
> Transaction T2 displays the total amount of money in accounts A and B,
that is, the sum of A+ B.

DMS 2010/11 J. Gamper 5/40

Pitfalls of Lock-Based Protocols ...

» Example (contd.): Early unlocking can T X-Iollk(B) ik
cause non-serializable schedules, and 2' read B
therefore potentially incorrect results. 3' B — B-50
> eg., A =$100, B = $200 4 write B
» = display A + B shows $250 5. U-lock(B)
» <T1,T2> and <T2, T1> display $300 |g S-lock(A)
7. read A
8. U-lock(A)
9. S-lock(B)
10. read B
11. U-lock(B)
12. display A + B
13. X-lock(A)
14. read A
15. A := A+50
16. write A
17. U-lock(A)

DMS 2010/11 J. Gamper 6/40

Pitfalls of Lock-Based Protocols ...

» Example (contd.): Late unlocking can lead to deadlocks
> Neither T1 nor T> can make progress:

> executing lock-S(B) causes T, to wait for Ty to release its lock on B.
> executing lock-X(A) causes T7 to wait for T to release its lock on A.

» To handle a deadlock one of T; or T, must be rolled back and its locks

released.
T1 T2

1. X-lock(B)

2. read B

3. B:=B-50

4. write B

5. S-lock(A)
6. read (A)
7. S-lock(B)
8. X-lock(A)

DMS 2010/11 J. Gamper 7/40

Two-Phase Locking Protocol

» Two-Phase Locking Protocol: A locking protocol that ensures
conflict-serializable schedules. It works in two phases:

> Phase 1: Growing Phase

> transaction may obtain locks
> transaction may not release locks

> Phase 2: Shrinking Phase

> transaction may release locks
> transaction may not obtain locks

» Lock point: Transition point form phase 1 into phase 2, i.e., when the first
lock is released.

DMS 2010/11 J. Gamper 8/40

Two-Phase Locking Protocol ...

» Example: Schedule with locking instructions following the Two-Phase

Locking Protocol

DMS 2010/11

T1 T2
1. X-lock(B)
2. read B
3. B:=B-50
4. write B
5. X-lock(A)
6. U-lock(B)
7. S-lock(B)
8. read(B)
9. read(A)
10. A := A+50
11. write(A)
12. unlock(A)
13. S-lock(A)
14 read(A)
15. display A + B
16. unlock(B)
17. unlock(A)

J. Gamper

9/40

Two-Phase Locking Protocol ...

» Properties of the Two-Phase Locking Protocol
> Ensures serializability
> It can be shown that the transactions can be serialized in the order of their
lock points (i.e., the point where a transaction acquired its final lock).
> Does not ensure freedom from deadlocks
» Cascading roll-back is possible

» Modifications of the two-phase locking protocol
> Strict two-phase locking

> A transaction must hold all its exclusive locks till it commits/aborts
> Avoids cascading roll-back

» Rigorous two-phase locking

> All locks are held till commit/abort.
> Transactions can be serialized in the order in which they commit.

DMS 2010/11 J. Gamper 10/40

Two-Phase Locking Protocol ...

» Refinement the two-phase locking protocol with lock conversions
> Phase 1:

> can acquire a lock-S on item
> can acquire a lock-X on item
> can convert a lock-S to a lock-X (upgrade)

» Phase 2:

> can release a lock-S
> can release a lock-X
> can convert a lock-X to a lock-S (downgrade)

» Ensures serializability

» Strict and rigorous two-phase locking (with lock conversions) are used
extensively in DBMS.

DMS 2010/11 J. Gamper 11/40

Automatic Acquisition of Locks

> A transaction T; issues the standard read/write instruction without explicit
locking calls (by the programmer).

» The operation read(D) is processed as follows:

if T; has a lock on D then
read(D);
else
If necessary wait until no other transaction has a lock-X on D;
Grant T; a lock-S on D:;
read(D);
end

DMS 2010/11 J. Gamper 12/40

Automatic Acquisition of Locks ...

» The operation write(D) is processed as:

if T; has a lock-X on D then
write(D);
else
If necessary wait until no other transaction has any lock on D;
if T; has a lock-S on D then
Upgrade lock on D to lock-X;
else
Grant T; a lock-X on D;
end
write(D);
end

» All locks are released after commit or abort

DMS 2010/11 J. Gamper 13/40

Implementation of Locking

v

A lock manager can be implemented as a separate process to which
transactions send lock and unlock requests.

v

The lock manager replies to a lock request by sending a lock grant message
(or a message asking the transaction to roll back, in case of a deadlock).

v

The requesting transaction waits until its request is answered.

v

The lock manager maintains a data structure called a lock table to record
granted locks and pending requests.

DMS 2010/11 J. Gamper 14/40

Lock-Based Protocols ...

» Lock table

> Implemented as in-memory hash table
indexed on the data item being locked

>
>

Black rectangles indicate granted locks.
White rectangles indicate waiting
requests.

Records also the type of lock

granted /requested.

> Processing of requests:

>

DMS 2010/11

New request is added to the end of the
queue of requests for the data item,
and granted if it is compatible with all
earlier locks.

Unlock requests result in the request
being deleted, and later requests are
checked to see if they can now be
granted.

If transaction aborts, all waiting or
granted requests of the transaction are
deleted.

(Index on transaction to implement this
efficiently.)

J. Gamper

15/40

Graph-Based Protocols

» Graph-based protocols
> Impose a partial order (—) on the set D = {d1, d>, ..., dp} of all data items.
> If di — d; then any transaction accessing both di and dj must access d}

before accessing dj.
> Implies that the set D may now be viewed as a directed acyclic graph, called

a database graph.

» Graph-based protocols are an alternative to two-phase locking and ensure
conflict serializability.

DMS 2010/11 J. Gamper 16/40

Graph-

Based Protocols ...

» Tree-protocol: A simple kind of graph-based protocol that works as
follows:

» Only exclusive locks lock-X are allowed.
> The first lock by a transaction T; may be

on any data item.

Subsequently, a data item Q can be
locked by T; only if the parent of Q is
currently locked by T;.

> Data items may be unlocked at any time.
» A data item that has been locked and

DMS 2010/11

unlocked by T; cannot subsequently be
relocked by T;.

J. Gamper

17/40

Graph-Based Protocols ...

» Example: The following 4 transactions follow the treeprotocol on the
database graph below.

» T10: lock-X(B); lock-X(E); lock-X(D); unlock(B); unlock(E); lock- X(G);
unlock(D); unlock(G);

> T11: lock-X(D); lock-X(H); unlock(D); unlock(H);

> T12: lock-X(B); lock-X(E); unlock(E); unlock(B);

> T13: lock-X(D); lock-X(H); unlock(D); unlock(H);

DMS 2010/11 J. Gamper 18/40

Graph-Based Protocols ...

» Example: (contd.) One possible schedule

DMS 2010/11

T10 T11 T12 T13
lock-X(B)
lock-X(D)
lock-X(H)
unlock(D)
lock-X(E)
lock-X(D)
unlock(B)
unlock(E)
lock-X(B)
lock-X(E)
unlock(H)
lock-X(G)
unlock(D) lock X(D)
ock-
lock-X(H)
unlock(D)
unlock(H)
unlock(E)
unlock(B)
unlock(G)

J. Gamper

19/40

Graph-Based Protocols ...

» The tree protocol:

» ensures conflict serializability;
> ensures freedom from deadlock;
> the abort of a transaction might lead to cascading rollbacks;

» Unlocking may occur earlier in the tree-locking protocol than in the
two-phase locking protocol.
> shorter waiting times and increase in concurrency

» However, in the tree-protocol a transaction may have to lock data items
that it does not access.

> increased locking overhead and additional waiting time
> potential decrease in concurrency

» Schedules not possible under two-phase locking are possible under tree
protocol and vice versa.

DMS 2010/11 J. Gamper 20/40

Timestamp-Based Protocols

» Timestamp-based protocols
» Each transaction gets a timestamp when it enters the system.
> If an old transaction T; has timestamp TS(T;), a new transaction Tj is
assigned timestamp TS(T;) such that TS(T;) < TS(Tj).
» The protocol manages concurrent execution such that the timestamps
determine the serializability order as follows:

> If TS(T;) < TS(T;), the produced schedule is equivalent to the serial
schedule (Ti, Tj)

» The protocol maintains for each data item Q two timestamp values:
> W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully
> R-timestamp(Q) is the largest time-stamp of any transaction that executed
read(Q) successfully.

DMS 2010/11 J. Gamper 21/40

Timestamp-Based Protocols ...

» Timestamp ordering protocol
> |s a specific timestamp-based protocol that ensures that conflicting read
and write operations are executed in timestamp order by imposing the
following rules.
> Transaction T; issues a read(Q):
> If TS(T;) < W — timestamp(Q), then T; needs to read a value of Q that was
already overwritten. The read operation is rejected, and T; is rolled back.
> If TS(T;) > W — timestamp(Q), then the read operation is executed, and
Rtimestamp(Q) is set to the maximum of R-timestamp(Q) and TS(T;).

» Transaction T; issues write(Q):
> If TS(T;) < R — timestamp(Q), then the value of Q that T; is producing was
needed previously, and the system assumed that that value would never be
produced. The write operation is rejected, and T; is rolled back.
> If TS(T;) < W — timestamp(Q), then T; is attempting to write an obsolete
value of Q. The write operation is rejected, and T; is rolled back.
> Otherwise, the write op. is executed, and W-timestamp(Q) is set to TS(T;).

DMS 2010/11 J. Gamper 22/40

Timestamp-Based Protocols ...

» Example: The following schedule is possible under the timestamp ordering
protocol.

> Since we assume TS(T14) < TS(Tis), the schedule must be conflict

DMS 2010/11

equivalent to the schedule (T4, T1s)

T1a T1s

read(B)

read(B)

B :=B-50

write(B)
read(A)

read(A)
display(A+B)

A:=A+50

write(A)

display(A+B)

J. Gamper

23/40

Timestamp-Based Protocols

» Properties of the timestamp-ordering protocol

» Guarantees conflict serializability, since conflicting operations are processed
in timestamp order.

> All arcs in the precedence graph are of the following form

N N

transaction | transaction |
with smaller with larger
timestamp timestamp
g g T,

> Thus, there will be no cycles in the precedence graph

> Ensures freedom from deadlock as no transaction ever waits.
> The schedule may not be cascade-free and may not even be recoverable.

DMS 2010/11 J. Gamper 24/40

Timestamp-Based Protocols ...

» Recoverability and cascade freedom in the timestamp-ordering protocol
» Suppose T; aborts, but T; has read a data item written by T;
» Then T; must abort; if T; had been allowed to commit earlier, the schedule
is not recoverable.
> Further, any transaction that has read a data item written by T; must abort,
which might lead to a cascading rollback.
» Solution:
> All writes are performed at the end of a transaction and they form an
atomic action in the sense that while the writes are in progress no
transaction may access any of the data items that have been written.
> A transaction that aborts is restarted with a new timestamp.

DMS 2010/11 J. Gamper 25/40

Multiple Granularity

> Instead of locks on individual data items, sometimes it is advantageous to
group several data items and to treat them as one individual
synchronization unit (e.g. if a transaction accesses the entire DB).

> Define a hierarchy of data granularities of different size, where the small
granularities are nested within larger ones.

» Can be represented graphically as a tree

» When a transaction locks a node in the tree explicitly, it implicitly locks all

the node's descendents in the same mode.

DMS 2010/11 J. Gamper 26/40

Multiple Granularity ...

» Example: Graphical representation of a hierarchy of granularities

> The highest level is the entire database.
> The levels below are of type area, file and record in that order.

» Granularity of locking (= level in tree where locking is done):

> fine granularity (lower in tree): high concurrency, high locking overhead
> coarse granularity (higher in tree): low locking overhead, low concurrency

DMS 2010/11 J. Gamper 27/40

Multiversion Protocols

» Concurrency control protocols studied thus far ensure serializability by
either delaying an operation or aborting the transaction.

» Multiversion protocols keep old versions of data items to increase
concurrency.
» Each successful write(Q) creates a new version of Q.
> Timestamps are used to label versions.
> When a read(Q) operation is issued, select an appropriate version of Q
based on the timestamp of the transaction.
> Reads never have to wait as an appropriate version is available.

» Two types of multiversion protocols

> Multiversion timestamp ordering
» Multiversion two-phase locking

DMS 2010/11 J. Gamper 28/40

Multiversion Timestamp Ordering

» Multiversion timestamp ordering protocol
> For each data item Q a sequence of versions (Q1, Q,, Qm) is maintained.
» Each version Qi contains 3 data fields:

» Content — value of version Q.
> W-timestamp(Qy) — timestamp of the transaction that created (wrote)

version Q
> R-timestamp(Qy) — largest timestamp of transaction that successfully read

version Qg
» When a transaction T; creates a new version Qx of Q, the W-timestamp
and R-timestamp of Q are initialized to TS(T;).
> R-timestamp of Qx is updated whenever a transaction T; reads Qx, and
TS(T;) > R-timestamp(Q).

DMS 2010/11 J. Gamper 29/40

Multiversion Timestamp Ordering ...

» The following multiversion timestamp-ordering protocol ensures
serializability.

1. If transaction T; issues a read(Q), then the value returned is the content of
version Qx, which is the version of Q with the largest write timestamp less
than or equal to TS(T;)

2. If transaction T; issues a write(Q):

> If TS(T;) < R-timestamp(Qx), then transaction T; is rolled back

> Otherwise, if TS(T;) = W-timestamp(Qy), the contents of Qj are
overwritten.

» Otherwise a new version of Q is created.

DMS 2010/11 J. Gamper 30/40

Multiversion Timestamp Ordering ...

> Properties of the multiversion timestamp-ordering protocol

> reads always succeed and never have to wait

> A transaction reads the most recent version that comes before it in time.
> In a typical DBMS reading is a more frequent operation than writing, hence
this advantage might be significant.

> write: A transaction is aborted if it is “too late”in doing a write

> i.e., a write by T; is rejected if another transaction T; that should read T]s
write has already read a version created by a transaction older than T;.

» Disadvantages
» Reading of a data item also requires the updating of the R-timestamp,
resulting in two disk accesses rather than one.
> The conflicts between transactions are resolved through rollbacks rather

than through waits.

DMS 2010/11 J. Gamper 31/40

Deadlock Handling

» Consider the following two transactions:

T1: write (X) Ty write(Y)
write(Y) write(X)
» Schedule with a deadlock
Ty T,
lock-X on X
write (X)
lock-X on' Y
write (Y)
wait for lock-X on X
wait for lock-X on Y

DMS 2010/11

J. Gamper

32/40

Deadlock Handling ...

» Deadlock: A system is in a deadlock state if there is a set of transactions
such that every transaction in the set is waiting for another transaction in
the set.

» A deadlock has to be resolved by rolling back some of the transactions
involved in the deadlock.

> Deadlocks are addressed in two ways:

» Deadlock prevention protocols are used
> Deadlocks are detected and resolved

DMS 2010/11 J. Gamper 33/40

Deadlock Prevention Protocols

» Deadlock prevention protocols ensure that the system will never enter
into a deadlock state.

» Some prevention strategies:
> Require that each transaction locks all its data items before it begins
execution (pre-declaration).
> Difficult to know in advance
> Data-item utilization may be very low
» Impose partial ordering of all data items and require that a transaction can
lock data items only in the order specified by the partial order (graph-based
protocol).

> Tree protocol
» Data items have to be known in advance

DMS 2010/11 J. Gamper 34/40

Deadlock Prevention Protocols ...

v

Deadlock prevention protocols using transaction timestamps.

» Wait-die scheme
» Wound-wait scheme

v

Wait-die scheme - non-preemptive technique

> Older transaction may wait for younger one to release data item. Younger
transactions never wait for older ones; they are rolled back instead (dies)

v

Example: Transactions Tyy, T3, To4 with timestamps 5, 10, 15

> T2 requests data item held by T3 : T2 will wait
> T4 requests data item held by T3 : T4 will be rolled back.

» A transaction may die several times before acquiring the needed data item

DMS 2010/11 J. Gamper 35/40

Deadlock Prevention Protocols ...

» Wound-wait scheme - preemptive technique

> Older transaction wounds (forces rollback) of younger transaction instead of
waiting for it. Younger transactions may wait for older ones

» Example: Transactions Ty, To3, To4 with timestamps 5, 10, 15

> Ty requests data item held by T3 : Ta3 will be rolled back
> T4 requests data item held by T3 : Tos will wait.

» May be fewer rollbacks than wait-die scheme.

» Both in wait-die and in wound-wait protocols, a rolled-back transaction is
restarted with its original timestamp. Older transactions thus have
precedence over newer ones, and starvation is hence avoided.

DMS 2010/11 J. Gamper 36/40

Deadlock Prevention Protocols ...

» Timeout-based protocols
> A transaction waits for a lock only for a specified amount of time. After
that, the wait times out and the transaction is rolled back.
» Thus, deadlocks are not possible.
» Simple to implement; but starvation is possible. Also difficult to determine
good value of the timeout interval.

DMS 2010/11 J. Gamper 37/40

Deadlock Detection and Recovery

» Deadlocks can be described as a wait-for graph, which consists of a pair

G=(V,E)
> V is a set of vertices representing all the transactions
» E is a set of edges; each element is an ordered pair T; — Tj;.

» If T; — T;isin E, there is a directed edge from T; to T;, implying that T;
is waiting for T; to release a data item.

» If T; requests a data item being held by T;, edge T; — T; is inserted in the
wait-for graph. This edge is removed when T; is no longer holding a data
item needed by T;.

» The system is in a deadlock state if and only if the wait-for graph has a
cycle.

» A deadlock-detection algorithm must be invoked periodically to look for
cycles.

DMS 2010/11 J. Gamper 38/40

Deadlock Detection and Recovery ...

» Wait-for graph without a cycle » Wait-for graph with a cycle

DMS 2010/11 J. Gamper 39/40

Deadlock Detection and Recovery ...

» When a deadlock is detected, the system must recover from the deadlock.
» The most common solution is to roll back one or more transactions to
break the deadlock. Three actions are required:
1. Selection of a victim: Select that transaction(s) to roll back that will incur

minimum cost.
2. Rollback: Determine how far to roll back transaction

> Total rollback: Abort the transaction and then restart it.
> More effective to roll back transaction only as far as necessary to break
deadlock.

3. Check Starvation: happens if same transaction is always chosen as victim.

> Include the number of rollbacks in the cost factor to avoid starvation

DMS 2010/11 J. Gamper 40/40

