Database Management Systems 2010/11

— Chapter 6: Transactions —

J. Gamper

Transaction Concept
ACID Properties
Atomicity and Durability
Concurrent Execution
Serializability
Recoverability

vV vV v vV v v Y

Isolation

These slides were developed by:
— Michael Bohlen, University of Zurich, Switzerland
— Johann Gamper, University of Bozen-Bolzano, ltaly

DMS 2010/11 J. Gamper 1/30

Transaction Concept

» Transaction: A logical unit of program execution (i.e.,a sequence of
actions) that accesses and possibly updates various data items.|t includes
one or more DB access operations (insertion,deletion,modification,retrieval)

» For a transaction we have:

» A transaction must see a consistent database
» During transaction executio the DB may be inconsistent.
» When the transaction is committed, the DB must be consistent

» Two main issues to deal with:

> Various failures, e.g., hardware failures and system crashes
» Concurrent execution of multiple transacctions

DMS 2010/11 J. Gamper 2/30

ACID Properties

» To preserve integrity of data, a transaction must meet the ACID properties:

> Atomicity: A transaction’s changes to the state are atomic, i.e., either all
operations of the transaction are properly reflected in the DB or none are
(= recovery manager)

» Consistency: A transaction is a correct transformation of a state.The
actions (taken as a group) do not violate any of the integrity constraints
associated with the state. (= application programs and integrity checker)

> lIsolation: Although multiple transactions may execute concurrently, it
appears to each transaction that all other transactions are either executed
before or after. (= concurrency manager)

> Durability: After a transaction completes (commits) successfully, the
changes it has made to the database persist, even if there are system
failures. (= recovery manager)

DMS 2010/11 J. Gamper 3/30

ACID Properties ...

» Example: Transaction to transfer $50 from account A to account B:

1. read(A)
A:=A-50
write(A)
read(B)
B:=B + 50
write(B)

ookwnN

» ACID properties:
» Consistency requirement: the sum of A and B is unchanged by the
execution of the transaction.
> Atomicity requirement: if the transaction fails after step 3 and before step
6, the system should ensure that the updates are not reflected in the DB,
else an inconsistency will result.

DMS 2010/11 J. Gamper 4/30

ACID Properties ...

» Example (contd.)

» Durability requirement: once the user has been notified that the
transaction has completed (i.e., the $50 are transferred), the updates to the
DB by the transaction must persist despite failures.

> lIsolation requirement: if between steps 3 and 6, another transaction is
allowed to access the partially updated DB, it will see an inconsistent DB
(the sum A+ B will be less than it should be). This might result in an
inconsistent DB state after the completion of both transaction, if e.g. the
second transaction performs updates on A and B.

> These problems can be avoided trivially by running transactions serially, i.e.,
one after the other.

> However, executing multiple transactions concurrently has significant benefits
in performance.

DMS 2010/11 J. Gamper 5/30

Transaction State

» Active: (initial state) The transaction stays in this state during execution.

» Partially committed: After the final statement has been executed.

» Failed: After the discovery that normal execution can no longer proceed.
completion.

» Aborted: After the transaction has been rolled back and the DB restored
to its state prior to the start of the transaction. Two options after it has
been aborted:

» Restart the transaction
» Kill the transaction

commn led

DMS 2010/11 J. Gamper 6/30

Atomicity and Durability

» The recovery manager of a DBMS implements the support for atomicity
and durability.

» Shadow-database scheme (assume that only one transaction is active at a
time and disks do not fail):

> A pointer db_pointer points to
current consistent copy of DB.

> All updates are made on a shadow
copy of the DB, and db_pointer is
made to point to the updated shadow
copy only after the transaction o e e copyof
reaches partial commit and all (o
updated pages are flushed to disk.

» |If transaction fails, old copy pointed
to by db_pointer is used.

» Extremely inefficient for large DB (copy of entire DB)
> Useful for text editors

DMS 2010/11 J. Gamper 7/30

Concurrent Executions

» Multiple transactions are allowed to run concurrently in the system.
Advantages are:
> increased processor and disk utilization, leading to better transaction
throughput: one transaction can use the CPU while another reads from or
writes to the disk
> reduced average response time for transactions: short transactions need
not wait behind long ones.
» Basic assumption:
» Each transaction preserves DB consistency.
> Serial execution of a set of transactions preserves DB consistency.
» The concurrency control system restricts the interactions between
concurrent transactions in order to preserve the DB consistency.
> Not all concurrent schedules ensure consistency!

DMS 2010/11 J. Gamper 8/30

Schedules

» Schedule: Sequence of instructions from a set of concurrent transactions
that indicate the chronological order in which these instructions are
executed.

» Must consist of all instructions of all transactions.
> Must preserve the order of instructions within each individual transaction.

» Serial schedule: The transactions execute one after the other.
> One transaction is completely finished before another transaction starts.

DMS 2010/11 J. Gamper 9/30

Schedules ...

» Example: Consider the following transactions:

» T; transfer $50 from A to B
» T, transfer 10% of the balance from A to B.

» The following is a serial schedule, in which T; is followed by T>.
> Integrity constraint: Sum of A + B is preserved

T1
read(A)
A=A-50
write (A)
read(B)
B:=B+50
write(B)

read(A)

temp := A* 0.1
A=A - temp
write(A)
read(B)
B:=B + temp
write(B)

DMS 2010/11 J. Gamper 10/30

Schedules ...

» Example: (contd.)

» The following schedule is not a serial schedule, but it is equivalent to the
previous one.

» In both schedules the sum of A + B is preserved.

w r}te (A)

read(A)

temp := A*0.1
A=A - temp
write(A)
read(B)
B:=B+50
write(B)
read(B)

B :=B + temp
write(B)

DMS 2010/11 J. Gamper 11/30

Schedules ...

» Example: (contd.)

» The following concurrent schedule does not preserve the value of the sum

A + B.

>

read(A)
temp = A * 0.1
A=A — temp
write (A)
read(B)

write (A)
read(B)
B:=B+50
write (B)

B :=B + temp
write(B)

DMS 2010/11 J. Gamper

12/30

Serializability

» Serializable schedule: A schedule is serializable if it is equivalent to a
serial schedule.
» Different forms of schedule equivalence:
» conflict serializability
> view serializability
» We ignore operations other than read and write instructions:

> We assume that transactions may perform arbitrary computations on data in
local buffers in between reads and writes.
> Our simplified schedules consist of only read and write instructions.

DMS 2010/11 J. Gamper 13/30

Conflict Serializability

> Instructions /; and /; of transactions T; and T; conflict iff there exists a
data item @ accessed by /; and /; and at least one of these instructions is a
write operation on Q, i.e.,

li = read(Q) and [; = write(Q)

> i = write(Q) and [; = read(Q)
> | = write(Q) and ; = write(Q)

> | = read(Q) and I|; = read(Q) do not conflict since the order in which the
two instructions are executed does not matter.

v

DMS 2010/11 J. Gamper 14/30

Conflict Serializability . ..

» Transformation of schedules to generate equivalent schedules

» Assume a schedule S and two consecutive instructions /; and /; ;.
Instructions /; and /;1; can be swapped if they are non-conflicting, i.e., if
> both are read instructions, or
> they refer to different DB items, or
> one of them is not a DB operation (e.g., not read or write)

DMS 2010/11 J. Gamper 15/30

Conflict Serializability . ..

» Conflict equivalent schedules: If a schedule S can be transformed into a
schedule S’ by a series of nonconflicting swaps of instructions then S and S’
are conflict equivalent.

» Conflict serializable schedule: A schedule S is conflict serializable iff it is
conflict equivalent to a serial schedule.

DMS 2010/11 J. Gamper 16/30

Conflict Serializability . ..

» Example: A schedule that is not conflict serializable

5 | T
read(Q)
write(Q)
write(Q)

> It is not possible to swap instructions in the above schedule to obtain either
the serial schedule (T3, T4) or the serial schedule (Ty, T3).

DMS 2010/11 J. Gamper 17/30

Conflict Serializability . ..

» Example: The following schedule is conflict serializable, since it can be
transformed into (Ty, T») by nonconflicting swaps.

DMS 2010/11

T1 T2
read(A)
write(A)
write(A)
write(A)
read(B)
write(B)
write(B)
write(B)

J. Gamper

18/30

View Serializability

» View equivalent schedules: Let S and S’ be two schedules over the same
set of transactions Ty, T»,..., T,. S and S’ are view equivalent if the
following three conditions are met for all data items Q:

1. If T; reads the initial value of Q in S (read(Q)), then T; must in S’ also
read the initial value of Q.

2. If T; executes read(Q) in S and that value of Q was produced by T; (if
any), then T; must in S’ also read the value of @ that was produced by T; .

3. The transaction (if any) that performs the final write(Q) in S must perform

the final write(Q) in S,

» View serializable schedule: A schedule S is view serializable if it is view
equivalent to a serial schedule.

DMS 2010/11 J. Gamper 19/30

Conflict Serializability . ..

» Example: The following schedule is view-serializable (to (T3, T4, Te)) but
not conflict serializable by nonconflicting swaps.

T3 Ta Te
read(Q)
write(Q)
write(Q)
write(Q)

> Generally, we have:

» Every conflict serializable schedule is also view serializable
> Every view serializable schedule that is not conflict serializable has blind
writes, i.e., write operations without having performed a read operation.

DMS 2010/11 J. Gamper 20/30

Other Notions of Serializability

» The schedule given below produces the same outcome as the serial
schedule Ty, Ts), yet it is not conflict equivalent or view equivalent to it.

Ti Ts
read(A)
A:=A-50
write(A)
read(B)
B:=B-10
write(B)
read(B)
B:=B+50
write(B)
read(A)
A:=A+10
write(A)

» Determining such equivalence requires to analyse operations other than
read and write.

DMS 2010/11 J. Gamper 21/30

Testing for Conflict Serializability

» Consider a schedule S of transactions Ty, To,..., T,

» Precedence graph (conflict graph): A directed graph with a node T; for
each transaction and with an edge T; — T; iff one of the following
conditions holds:

> T; executes write(Q) before T; executes read(Q)
> T; executes read(Q) before T; executes write(Q)
> T; executes write(Q) before T; executes write(Q)

» A schedule is conflict serializable if and only if its precedence graph is

acyclic.

DMS 2010/11 J. Gamper 22/30

Testing for Conflict Serializability ...

» Example: A conflict serializable schedule with 5 transactions and

precedence graph

Tl T2 T3 T4 T5
read(X)
read(Y)
read(Z)
read(V)
read(W)
read(W)
read(Y)
write(Y)
write(Z)
read(U)
read(Y)
write(Y)
read(Z)
write(Z)
read(V)
DMS 2010/11 J. Gamper

Precedence graph

A

23/30

Testing for Conflict Serializability ...

» Cycle-detection algorithms exist which take O(n?) time, where n is the #
of vertices in the graph.
> Better algorithms in O(n?) time, where e is the # of edges.
> If the precedence graph is acyclic, the serializability order can be obtained
by a topological sorting of the graph. This is a linear order consistent with
the partial order of the graph
> e.g., a serializability order for the schedule in the previous example would be
Ts > T1i— T3 —> T — Ty .
» Topological sorting example

c

DMS 2010/11 J. Gamper 24/30

Test for View Serializability

» The precedence graph test for conflict serializability must be modified to be
applicable for testing view serializability.
» The problem of checking if a schedule is view serializable falls in the class
of NP-complete problems.
> Thus existence of an efficient algorithm is unlikely.
» However practical algorithms that just check some sufficient conditions for
view serializability can still be used.

DMS 2010/11 J. Gamper 25/30

Concurrency Control vs. Serializability Tests

» Testing a schedule for serializability after it has executed is a little too late!
» Goal: Develop concurrency control protocols that will assure serializability.

» Concurrency control protocols will generally not examine the precedence
graph as it is being created; instead a protocol will impose a discipline (i.e.,
a set of rules) that avoids non-seralizable schedules.

» Tests for serializability help understand why a concurrency control protocol
is correct.

» Will be discussed in chapter 7

DMS 2010/11 J. Gamper 26/30

Recoverability

> Need to address the effect of transaction failures on concurrently running
transactions.

> Recoverable schedule: For each pair of transactions T; and T; such that
T; reads a data item previously written by T;, the commit operation of T;
must appear before the commit operation of T;.

» DBMS must ensure that schedules are recoverable.

» Example: The following schedule is not recoverable if Tg commits
immediately after the read operation.

» |f Tg aborts, Tg would have read an inconsistent DB state.

Ts To
read(A)
write(A)
read(A)
read(B)

DMS 2010/11 J. Gamper 27/30

Recoverability . ..

» Cascading rollback: A single transaction failure leads to a series of
transaction rollbacks.

» Consider the following schedule where none of the transactions has yet
committed (so the schedule is recoverable)

» |f Ty fails, T11 and Ti2 must also be rolled back.

T1o Tu T1o
read(A)
read(B)
write(A)
read(A)
write(A)
read(A)

» Main problem: Can lead to the undoing of a significant amount of work.

DMS 2010/11 J. Gamper 28/30

Recoverability . ..

v

Cascadeless schedules: For each pair of transactions T; and T; such that
T; reads a data item previously written by T;, the commit operation of T;
appears before the read operation of T;.

v

A cascadeless schedule avoids cascading rollbacks.

v

Every cascadeless schedule is also recoverable

v

It is desirable to restrict the schedules to those that are cascadeless

DMS 2010/11 J. Gamper 29/30

Concurrency Control and Isolation

> If only one transaction can execute at a time we get serial schedules, which
provide a poor throughput.
» Transaction acquires a lock on the entire DB before it starts and releases
the lock after it has committed.
» Concurrency-control schemes is a tradeoff between the amount of
concurrency they allow and the amount of overhead that they incur.
» Some schemes allow only conflict-serializable schedules, while others allow
view-serializable schedules that are not conflictserializable.
» Desirable properties of a schedule to guarantee DB consistency:

» conflict/view serializable and recoverable
> and preferably cascadeless

DMS 2010/11 J. Gamper 30/30

