
Database Management Systems 2010/11

– Chapter 6: Transactions –

J. Gamper

◮ Transaction Concept

◮ ACID Properties

◮ Atomicity and Durability

◮ Concurrent Execution

◮ Serializability

◮ Recoverability

◮ Isolation

These slides were developed by:
– Michael Böhlen, University of Zurich, Switzerland
– Johann Gamper, University of Bozen-Bolzano, Italy

DMS 2010/11 J. Gamper 1/30

Transaction Concept

◮ Transaction: A logical unit of program execution (i.e.,a sequence of
actions) that accesses and possibly updates various data items.It includes
one or more DB access operations (insertion,deletion,modification,retrieval)

◮ For a transaction we have:
◮ A transaction must see a consistent database
◮ During transaction executio the DB may be inconsistent.
◮ When the transaction is committed, the DB must be consistent

◮ Two main issues to deal with:
◮ Various failures, e.g., hardware failures and system crashes
◮ Concurrent execution of multiple transacctions

DMS 2010/11 J. Gamper 2/30

ACID Properties

◮ To preserve integrity of data, a transaction must meet the ACID properties:

◮ Atomicity: A transaction’s changes to the state are atomic, i.e., either all
operations of the transaction are properly reflected in the DB or none are
(⇒ recovery manager)

◮ Consistency: A transaction is a correct transformation of a state.The
actions (taken as a group) do not violate any of the integrity constraints
associated with the state. (⇒ application programs and integrity checker)

◮ Isolation: Although multiple transactions may execute concurrently, it
appears to each transaction that all other transactions are either executed
before or after. (⇒ concurrency manager)

◮ Durability: After a transaction completes (commits) successfully, the
changes it has made to the database persist, even if there are system
failures. (⇒ recovery manager)

DMS 2010/11 J. Gamper 3/30

ACID Properties . . .

◮ Example: Transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A - 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

◮ ACID properties:
◮ Consistency requirement: the sum of A and B is unchanged by the

execution of the transaction.
◮ Atomicity requirement: if the transaction fails after step 3 and before step

6, the system should ensure that the updates are not reflected in the DB,
else an inconsistency will result.

DMS 2010/11 J. Gamper 4/30

ACID Properties . . .

◮ Example (contd.)
◮ Durability requirement: once the user has been notified that the

transaction has completed (i.e., the $50 are transferred), the updates to the
DB by the transaction must persist despite failures.

◮ Isolation requirement: if between steps 3 and 6, another transaction is
allowed to access the partially updated DB, it will see an inconsistent DB
(the sum A + B will be less than it should be). This might result in an
inconsistent DB state after the completion of both transaction, if e.g. the
second transaction performs updates on A and B.

◮ These problems can be avoided trivially by running transactions serially, i.e.,
one after the other.

◮ However, executing multiple transactions concurrently has significant benefits
in performance.

DMS 2010/11 J. Gamper 5/30

Transaction State
◮ Active: (initial state) The transaction stays in this state during execution.

◮ Partially committed: After the final statement has been executed.

◮ Failed: After the discovery that normal execution can no longer proceed.
completion.

◮ Aborted: After the transaction has been rolled back and the DB restored
to its state prior to the start of the transaction. Two options after it has
been aborted:

◮ Restart the transaction
◮ Kill the transaction

DMS 2010/11 J. Gamper 6/30

Atomicity and Durability

◮ The recovery manager of a DBMS implements the support for atomicity
and durability.

◮ Shadow-database scheme (assume that only one transaction is active at a
time and disks do not fail):

◮ A pointer db pointer points to
current consistent copy of DB.

◮ All updates are made on a shadow
copy of the DB, and db pointer is
made to point to the updated shadow
copy only after the transaction
reaches partial commit and all
updated pages are flushed to disk.

◮ If transaction fails, old copy pointed
to by db pointer is used.

◮ Extremely inefficient for large DB (copy of entire DB)
◮ Useful for text editors

DMS 2010/11 J. Gamper 7/30

Concurrent Executions

◮ Multiple transactions are allowed to run concurrently in the system.
Advantages are:

◮ increased processor and disk utilization, leading to better transaction
throughput: one transaction can use the CPU while another reads from or
writes to the disk

◮ reduced average response time for transactions: short transactions need
not wait behind long ones.

◮ Basic assumption:
◮ Each transaction preserves DB consistency.
◮ Serial execution of a set of transactions preserves DB consistency.

◮ The concurrency control system restricts the interactions between
concurrent transactions in order to preserve the DB consistency.

◮ Not all concurrent schedules ensure consistency!

DMS 2010/11 J. Gamper 8/30

Schedules

◮ Schedule: Sequence of instructions from a set of concurrent transactions
that indicate the chronological order in which these instructions are
executed.

◮ Must consist of all instructions of all transactions.
◮ Must preserve the order of instructions within each individual transaction.

◮ Serial schedule: The transactions execute one after the other.
◮ One transaction is completely finished before another transaction starts.

DMS 2010/11 J. Gamper 9/30

Schedules . . .
◮ Example: Consider the following transactions:

◮ T1 transfer $50 from A to B
◮ T2 transfer 10% of the balance from A to B.

◮ The following is a serial schedule, in which T1 is followed by T2.

◮ Integrity constraint: Sum of A + B is preserved

DMS 2010/11 J. Gamper 10/30

Schedules . . .

◮ Example: (contd.)

◮ The following schedule is not a serial schedule, but it is equivalent to the
previous one.

◮ In both schedules the sum of A + B is preserved.

DMS 2010/11 J. Gamper 11/30

Schedules . . .

◮ Example: (contd.)

◮ The following concurrent schedule does not preserve the value of the sum
A + B.

DMS 2010/11 J. Gamper 12/30

Serializability

◮ Serializable schedule: A schedule is serializable if it is equivalent to a
serial schedule.

◮ Different forms of schedule equivalence:
◮ conflict serializability
◮ view serializability

◮ We ignore operations other than read and write instructions:
◮ We assume that transactions may perform arbitrary computations on data in

local buffers in between reads and writes.
◮ Our simplified schedules consist of only read and write instructions.

DMS 2010/11 J. Gamper 13/30

Conflict Serializability

◮ Instructions Ii and Ij of transactions Ti and Tj conflict iff there exists a
data item Q accessed by Ii and Ij and at least one of these instructions is a
write operation on Q, i.e.,

◮ Ii = read(Q) and Ij = write(Q)
◮ Ii = write(Q) and Ij = read(Q)
◮ Ii = write(Q) and Ij = write(Q)

◮ Ii = read(Q) and Ij = read(Q) do not conflict since the order in which the
two instructions are executed does not matter.

DMS 2010/11 J. Gamper 14/30

Conflict Serializability . . .

◮ Transformation of schedules to generate equivalent schedules

◮ Assume a schedule S and two consecutive instructions Ii and Ii+1.
Instructions Ii and Ii+1 can be swapped if they are non-conflicting, i.e., if

◮ both are read instructions, or
◮ they refer to different DB items, or
◮ one of them is not a DB operation (e.g., not read or write)

DMS 2010/11 J. Gamper 15/30

Conflict Serializability . . .

◮ Conflict equivalent schedules: If a schedule S can be transformed into a
schedule S’ by a series of nonconflicting swaps of instructions then S and S’
are conflict equivalent.

◮ Conflict serializable schedule: A schedule S is conflict serializable iff it is
conflict equivalent to a serial schedule.

DMS 2010/11 J. Gamper 16/30

Conflict Serializability . . .

◮ Example: A schedule that is not conflict serializable

T3 T4

read(Q)
write(Q)

write(Q)

◮ It is not possible to swap instructions in the above schedule to obtain either
the serial schedule 〈T3,T4〉 or the serial schedule 〈T4,T3〉.

DMS 2010/11 J. Gamper 17/30

Conflict Serializability . . .

◮ Example: The following schedule is conflict serializable, since it can be
transformed into 〈T1,T2〉 by nonconflicting swaps.

T1 T2

read(A)
write(A)

write(A)
write(A)

read(B)
write(B)

write(B)
write(B)

DMS 2010/11 J. Gamper 18/30

View Serializability

◮ View equivalent schedules: Let S and S ′ be two schedules over the same
set of transactions T1,T2, . . . ,Tn. S and S ′ are view equivalent if the
following three conditions are met for all data items Q:

1. If Ti reads the initial value of Q in S (read(Q)), then Ti must in S ′ also
read the initial value of Q.

2. If Ti executes read(Q) in S and that value of Q was produced by Tj (if
any), then Ti must in S ′ also read the value of Q that was produced by Tj .

3. The transaction (if any) that performs the final write(Q) in S must perform
the final write(Q) in S ′.

◮ View serializable schedule: A schedule S is view serializable if it is view
equivalent to a serial schedule.

DMS 2010/11 J. Gamper 19/30

Conflict Serializability . . .

◮ Example: The following schedule is view-serializable (to 〈T3,T4,T6〉) but
not conflict serializable by nonconflicting swaps.

T3 T4 T6

read(Q)
write(Q)

write(Q)
write(Q)

◮ Generally, we have:
◮ Every conflict serializable schedule is also view serializable
◮ Every view serializable schedule that is not conflict serializable has blind

writes, i.e., write operations without having performed a read operation.

DMS 2010/11 J. Gamper 20/30

Other Notions of Serializability

◮ The schedule given below produces the same outcome as the serial
schedule 〈T1,T5〉, yet it is not conflict equivalent or view equivalent to it.

T1 T5

read(A)
A := A − 50

write(A)
read(B)

B := B − 10
write(B)

read(B)
B := B + 50

write(B)
read(A)

A := A + 10
write(A)

◮ Determining such equivalence requires to analyse operations other than
read and write.

DMS 2010/11 J. Gamper 21/30

Testing for Conflict Serializability

◮ Consider a schedule S of transactions T1,T2, . . . ,Tn

◮ Precedence graph (conflict graph): A directed graph with a node Ti for
each transaction and with an edge Ti → Tj iff one of the following
conditions holds:

◮ Ti executes write(Q) before Tj executes read(Q)
◮ Ti executes read(Q) before Tj executes write(Q)
◮ Ti executes write(Q) before Tj executes write(Q)

◮ A schedule is conflict serializable if and only if its precedence graph is
acyclic.

DMS 2010/11 J. Gamper 22/30

Testing for Conflict Serializability . . .

◮ Example: A conflict serializable schedule with 5 transactions and
precedence graph

DMS 2010/11 J. Gamper 23/30

Testing for Conflict Serializability . . .
◮ Cycle-detection algorithms exist which take O(n2) time, where n is the #

of vertices in the graph.
◮ Better algorithms in O(n2) time, where e is the # of edges.

◮ If the precedence graph is acyclic, the serializability order can be obtained
by a topological sorting of the graph. This is a linear order consistent with
the partial order of the graph

◮ e.g., a serializability order for the schedule in the previous example would be
T5 → T1 → T3 → T2 → T4 .

◮ Topological sorting example

DMS 2010/11 J. Gamper 24/30

Test for View Serializability

◮ The precedence graph test for conflict serializability must be modified to be
applicable for testing view serializability.

◮ The problem of checking if a schedule is view serializable falls in the class
of NP-complete problems.

◮ Thus existence of an efficient algorithm is unlikely.
◮ However practical algorithms that just check some sufficient conditions for

view serializability can still be used.

DMS 2010/11 J. Gamper 25/30

Concurrency Control vs. Serializability Tests

◮ Testing a schedule for serializability after it has executed is a little too late!

◮ Goal: Develop concurrency control protocols that will assure serializability.

◮ Concurrency control protocols will generally not examine the precedence
graph as it is being created; instead a protocol will impose a discipline (i.e.,
a set of rules) that avoids non-seralizable schedules.

◮ Tests for serializability help understand why a concurrency control protocol
is correct.

◮ Will be discussed in chapter 7

DMS 2010/11 J. Gamper 26/30

Recoverability

◮ Need to address the effect of transaction failures on concurrently running
transactions.

◮ Recoverable schedule: For each pair of transactions Ti and Tj such that
Tj reads a data item previously written by Ti , the commit operation of Ti

must appear before the commit operation of Tj .

◮ DBMS must ensure that schedules are recoverable.

◮ Example: The following schedule is not recoverable if T9 commits
immediately after the read operation.

◮ If T8 aborts, T9 would have read an inconsistent DB state.

T8 T9

read(A)
write(A)

read(A)
read(B)

DMS 2010/11 J. Gamper 27/30

Recoverability . . .

◮ Cascading rollback: A single transaction failure leads to a series of
transaction rollbacks.

◮ Consider the following schedule where none of the transactions has yet
committed (so the schedule is recoverable)

◮ If T10 fails, T11 and T12 must also be rolled back.

T10 T11 T12

read(A)
read(B)
write(A)

read(A)
write(A)

read(A)

◮ Main problem: Can lead to the undoing of a significant amount of work.

DMS 2010/11 J. Gamper 28/30

Recoverability . . .

◮ Cascadeless schedules: For each pair of transactions Ti and Tj such that
Tj reads a data item previously written by Ti , the commit operation of Ti

appears before the read operation of Tj .

◮ A cascadeless schedule avoids cascading rollbacks.

◮ Every cascadeless schedule is also recoverable

◮ It is desirable to restrict the schedules to those that are cascadeless

DMS 2010/11 J. Gamper 29/30

Concurrency Control and Isolation

◮ If only one transaction can execute at a time we get serial schedules, which
provide a poor throughput.

◮ Transaction acquires a lock on the entire DB before it starts and releases
the lock after it has committed.

◮ Concurrency-control schemes is a tradeoff between the amount of
concurrency they allow and the amount of overhead that they incur.

◮ Some schemes allow only conflict-serializable schedules, while others allow
view-serializable schedules that are not conflictserializable.

◮ Desirable properties of a schedule to guarantee DB consistency:
◮ conflict/view serializable and recoverable
◮ and preferably cascadeless

DMS 2010/11 J. Gamper 30/30

