
Database Management Systems 2010/11

– Chapter 5: Query Optimization –

J. Gamper

◮ Introduction

◮ Statistical information for cost estimation

◮ Transformation of relational expressions (equiv. rules)

◮ Rule-based and cost-based optimization

◮ Optimizing nested subqueries

◮ Materialized views and view maintenance

These slides were developed by:
– Michael Böhlen, University of Zurich, Switzerland
– Johann Gamper, University of Bozen-Bolzano, Italy

DMS 2010/11 J. Gamper 1/53

Introduction

◮ Alternative ways of evaluating a given query
◮ Equivalent expressions
◮ Different algorithms for each operation

◮ Represented as query evaluation plan (query plan)
◮ Annotated RA-expression that specifies for each operator detailed

instructions on how to evaluate it.

◮ Cost difference between a good and a bad query evaluation plan can be
enormous

◮ e.g., performing a r × s followed by a selection r .A = s.B is much slower
than performing a join on the same condition

◮ Query optimizer needs to estimate cost of operations
◮ Depends critically on statistical information about relations
◮ Estimates statistics for intermediate results to compute cost of complex

expressions

DMS 2010/11 J. Gamper 2/53

Introduction . . .
◮ Example: Find the names of all customers who have an account at any

branch located in Brooklyn.

◮ The following expression produces a large intermediate relation

Πcustomer−name(σbranch−city=′Brooklyn′(branch 1 (account 1 depositor)))

◮ Transformation into a more efficient expression

Πcustomer−name(σbranch−city=′Brooklyn′(branch 1)(account 1 depositor))

DMS 2010/11 J. Gamper 3/53

Introduction . . .

◮ Goal of query optimizer: Find the most efficient query evaluation plan for
a given query.

◮ Two different paradigms for query optimization:
◮ Cost-based optimization:

1. Generate logically equivalent expressions (using equivalence rules to transform
an expression into an equivalent one)

2. Annotate resulting expressions with information about algorithms/indexes for
each operator

3. Choose the cheapest plan based on estimated cost

◮ Rule-based/heuristic optimization:

1. Generate logically equivalent expressions (using equivalence rules), but
controlled by a set of heuristic query optimization rules

◮ In general, it is not possible to identify the optimal query tree. Instead, a
reasonably efficient one is chosen.

DMS 2010/11 J. Gamper 4/53

Statistical Information

◮ The cost of an operation depends on the size and other statistics of its
inputs, which is partially stored in the database catalog and can be used to
estimate statistics on the results of various operations.

◮ nr : number of tuples in a relation r
◮ br : number of blocks containing tuples of r
◮ sr : size of a tuple of r
◮ fr : blocking factor of r , i.e., the number of tuples of r that fit into one block
◮ V (A, r): number of distinct values that appear in r for attribute A; same as

the size of πA(r)
◮ SC(A, r): selection cardinality of attribute A of relation r ; average number

of records that satisfy equality on A

DMS 2010/11 J. Gamper 5/53

Catalog Information about Indices

◮ fi : average fan-out of internal nodes of index i for tree-structured indexes
such as B+-trees

◮ HTi : number of levels in index i , i.e., the height of i
◮ For a B+-tree on attribute A of relation r , HTi = ⌈logfi

(V (A, r))⌉
◮ For a hash index, HTi = 1
◮ LBi : number of lowest-level index blocks in i , i.e., the number of blocks at

the leaf level of the index

◮ For accurate statistics, the catalog information has to be updated every
time a relation is modified

◮ Many systems update statistics only during periods of light system load,
thus statistics is not completely accurate.

◮ Plan with lowest estimated cost might not be the cheapest!

DMS 2010/11 J. Gamper 6/53

Measures of Query Cost

◮ Recall that
◮ typically disk access is the predominant cost, and it is relatively easy to

estimate;
◮ the number of block transfers from disk is used as a measure of the actual

cost of evaluation;
◮ it is assumed that all transfers of blocks have the same cost;

◮ Real life optimizers do not make this assumption, and distinguish between
sequential and random disk access

◮ we do not include cost to writing output to disk.

DMS 2010/11 J. Gamper 7/53

Transformation of RA Expressions

◮ Two relational algebra expressions are said to be equivalent if on every
legal database instance the two expressions generate the same set of tuples

◮ Note: order of tuples is irrelevant

◮ In SQL, inputs and outputs are multisets of tuples
◮ Two expressions in the multiset version of the relational algebra are said to

be equivalent if on every legal database instance the two expressions
generate the same multiset of tuples

◮ An equivalence rule says that expressions of two different forms are
equivalent

◮ Can replace expression of first form by second, or vice versa

DMS 2010/11 J. Gamper 8/53

Equivalence Rules
Let E ,E1, . . . be RA expressions and θ, θ1, . . . be predicates/conditions

1. Conjunctive selection operations can be deconstructed into a sequence of
individual selections.

σθ1∧θ2
(E) = σθ1

(σθ2
(E))

2. Selection operations are commutative.

σθ1
(σθ2

(E)) = σθ2
(σθ1

(E))

3. Only the last in a sequence of projections is needed, the others can be
omitted (Li are lists of attributes).

πL1
(πL2

(. . . (πLn
(E)) . . .)) = πL1

(E)

4. Selections can be combined with CP and theta joins

a. σθ(E1 × E2) = E1 1θ E2

b. σθ1
(E1 1θ2

E2) = E1 1θ1∧θ2
E2

DMS 2010/11 J. Gamper 9/53

Equivalence Rules . . .

5. Theta-joins (and natural joins) are commutative

E1 1θ E2 = E2 1θ E1

6. (a) Natural join operations are associative

(E1 1 E2) 1 E3 = E1 1 (E2 1 E3)

(b) Theta joins are associative in the following way:

(E1 1θ1
E2) 1θ2∧θ3

E3 = E1 1θ1∧θ3
(E2 1θ2

E3)

where θ2 involves attributes from only E2 and E3.

◮ Any of the conditions might be empty, hence the Cartesian product
operation is also associative and commutative

◮ Commutativity and associativity of join operations are important for join
reordering.

DMS 2010/11 J. Gamper 10/53

Equivalence Rules . . .

◮ Graphical representation of equivalence rules

DMS 2010/11 J. Gamper 11/53

Equivalence Rules . . .

7. The selection operation distributes over the theta join operation under the
following two conditions:

(a) When all the attributes in θ0 involve only the attributes of one of the
expressions (E1) being joined:

σθ0(E1 1θ E2) = (σθ0(E1)) 1θ E2

(b) When θ1 involves only the attributes of E1 and θ2 involves only the
attributes of E2:

σθ1∧θ2(E1 1θ E2) = (σθ0(E1)) 1θ (σθ2(E2))

DMS 2010/11 J. Gamper 12/53

Equivalence Rules . . .

8. The projection operation distributes over the theta join operation as follows:

◮ Let L1 and L2 be sets of attributes from E1 and E2, respectively.

(a) if θ involves only attributes from L1 ∪ L2

πL1∪L2(E1 1θ E2) = (πL1(E1)) 1θ (πL2(E2))

(b) Consider a join E1 1θ E2.
◮ Let L3 be attributes of E1 that are involved in join condition θ, but are not in

L1 ∪ L2
◮ Let L4 be attributes of E2 that are involved in join condition θ, but are not in

L1 ∪ L2

πL1∪L2(E1 1θ E2) = πL1∪L2((πL1∪L3(E1)) 1θ (πL2∪L4(E2)))

DMS 2010/11 J. Gamper 13/53

Equivalence Rules . . .

9. The set operations union and intersection are commutative

E1 ∪ E2 = E2 ∪ E1

E1 ∩ E2 = E2 ∩ E1

◮ Set difference is not commutative!

10. Set union and intersection are associative.

(E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)

(E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)

DMS 2010/11 J. Gamper 14/53

Equivalence Rules . . .

11. The selection operation distributes over ∪, ∩ and −

σθ(E1 − E2) = σθ(E1) − σθ(E2)

σθ(E1 ∪ E2) = σθ(E1) ∪ σθ(E2)

σθ(E1 ∩ E2) = σθ(E1) ∩ σθ(E2)

◮ Also σθ(E1 − E2) = σθ(E1) − E2

and similarly for ∩ in place of −, but not for ∪

12. The projection operation distributes over union

πL(E1 ∪ E2) = (πL(E)) ∪ (πL(E2))

DMS 2010/11 J. Gamper 15/53

Transformation Examples

◮ Example 1: Bank database
◮ Branch(branch-name, branch-city, assets)
◮ Account(account-number, branch-name, balance)
◮ Depositor(customer-name, account-number)

◮ Query: Find the names of all customers who have an account at some
branch located in Brooklyn.

πcustomer−name(σbranch−city=′Brooklyn′(branch 1 (account 1 depositor)))

◮ Transformation using rule 7a:

πcustomer−name(σbranch−city=′Brooklyn′(branch) 1 (account 1 depositor))

◮ Performing the selection as early as possible reduces the size of the
intermediate relation to be joined.

DMS 2010/11 J. Gamper 16/53

Transformation Examples

◮ Example 2: Multiple transformations are often needed

◮ Query: Find the names of all customers with an account at Brooklyn
whose balance is below $1000.

πcustomer−name(

σbranch−city=′Brooklyn′∧balance<1000(branch 1 (account 1 depositor)))

◮ Transformation using join associativity (Rule 6a):

πcustomer−name(

σbranch−city=′Brooklyn′∧balance<1000(branch 1 account) 1 depositor)

◮ Second, apply the “perform selections early” rule (7b), resulting in the
subexpression

σbranch−city=′Brooklyn′(branch) 1 σbalance<1000(account)

DMS 2010/11 J. Gamper 17/53

Transformation Exampless . . .

◮ Example 2 (continued)
◮ Tree representation after multiple transformations

DMS 2010/11 J. Gamper 18/53

Transformation Exampless . . .

◮ Example 3: Projection operation in the following query:

πcustomer−name((σbranch−city=′Brooklyn′(branch) 1 account) 1 depositor)

◮ When we compute

(σbranch−city=′Brooklyn′(branch) 1 account)

we obtain an intermediate relation with schema
(branch-name, branch-city, assets, account-number, balance)

◮ Push projections using equiv. rules 8a and 8b; thus, eliminate unneeded
attributes from intermediate results:

πcustomer−name(

πaccount−number (σbranch−city=′Brooklyn′(branch) 1 account) 1 depositor)

DMS 2010/11 J. Gamper 19/53

Transformation Exampless . . .

◮ Example 4: Join ordering

◮ For relations r1, r2, and r3 we have

(r1 1 r2) 1 r3 = r1 1 (r2 1 r3)

◮ If r2 1 r3 is quite large and r1 1 r2 is small, we choose

(r1 1 r2) 1 r3

so that we compute and store a smaller temporary relation.

DMS 2010/11 J. Gamper 20/53

Transformation Exampless . . .

◮ Example 5: Join ordering

◮ Consider the expression

πcustomer−name((σbranch−city=′Brooklyn′(branch)) 1 account 1 depositor)

◮ Could compute account 1 depositor first, and join result with

branch − city =′ Brooklyn′(branch)

but account 1 depositor is likely to be a large relation.

◮ Since it is more likely that only a small fraction of the banks customers
have accounts in branches located in Brooklyn, it is better to compute first

branch − city =′ Brooklyn′(branch) 1 account

DMS 2010/11 J. Gamper 21/53

Enumeration of Equivalence Expressions

◮ Query optimizers use the equivalence rules to systematically generate
expressions that are equivalent to the given expression

◮ Naive algorithm
repeat

foreach expression found so far do
use all applicable equivalence rules, and add newly generated expressions
to the set of expressions found so far

end
until no more expressions can be found;

◮ This approach is very expensive in space and time

◮ Reduce space requirements by sharing common subexpressions:
◮ When E1 is generated from E2 by an equivalence rule, usually only the top

level of the two are different, subtrees below are the same and can be shared
(e.g. when applying join associativity)

◮ Time requirements are reduced by not generating all expressions (e.g., take
cost estimates into account)

DMS 2010/11 J. Gamper 22/53

Evaluation Plan

◮ Evaluation plan (query plan/query tree): Defines exactly what
algorithm is used for each operation, and how the execution of the
operations is coordinated.

DMS 2010/11 J. Gamper 23/53

Choice of Evaluation Plans

◮ When choosing the “best” evaluation plan, the query optimizer must
consider the interaction of evaluation techniques

◮ Choosing the cheapest algorithm for each operation independently may not
yield best overall algorithm, e.g.,

◮ merge-join may be costlier than hash-join, but may provide a sorted output
which reduces the cost for an outer level aggregation;

◮ nested-loop join may provide opportunity for pipelining.

◮ Practical query optimizers incorporate elements of the following two broad
approaches

◮ Cost-based optimization: Search all the plans and choose the best plan in
a cost-based fashion.

◮ Recently, they are becoming more and more popular

◮ Rule-based optimization: Uses heuristics to choose a plan.

DMS 2010/11 J. Gamper 24/53

Cost-Based Optimization

◮ Algorithm

1. Use transformations (equivalence rules) to generate multiple candidate
evaluation plans from the original evaluation plan.

2. Cost formulas estimate the cost of executing each operation in each
candidate evaluation plan. Cost formulas are parameterized by

◮ statistics of the input relations;
◮ dependent on the specific algorithm used by the operator;
◮ CPU time, I/O time, communication time, main memory usage, or a

combination.

3. The candidate evaluation plan with the least total cost is selected for
execution.

DMS 2010/11 J. Gamper 25/53

Cost-Based Optimization . . .

◮ A good ordering of joins is important for reducing the size of temporary
results.

◮ Example: Consider finding the best join-order for r1 1 r2 1 . . . rn
◮ There are (2(n − 1))!/(n − 1)! different join orders for above expression:

◮ With n = 3, the number is 12
◮ With n = 7, the number is 665,280
◮ With n = 10, the number is greater than 17.6 billion!

◮ No need to generate all the join orders. Using dynamic programming, the
least-cost join order for any subset of {r1, r2, . . . rn} is computed only once
and stored for future use.

◮ Example: Find the best join order for (r1 1 r2 1 r3) 1 r4 1 r5
◮ 12 different join orders for the first part, 12 different orders for the rest
◮ Instead of considering 12 x 12 join orders we first find the best order for

{r1, r2, r3} and then use that order for the second part (i.e., joins with r3, r4)
◮ 12 + 12 orders instead of 144!

DMS 2010/11 J. Gamper 26/53

Join Order Optimization . . .

◮ To find the best evaluation plan for a set S of n relations:

◮ Consider all possible plans of the form S1 1 (S − S1), where S1 is any
non-empty subset of S .

◮ Recursively compute costs for joining subsets of S to find the cost of each
plan. Choose the cheapest of the 2n − 1 alternatives.

◮ When a plan for any subset is computed, store it and reuse itwhen it is
required again, instead of recomputing it from scratch

⇒ dynamic programming

DMS 2010/11 J. Gamper 27/53

Join Order Optimization . . .
◮ Dynamic programming algorithm for join order optimization

Algorithm: findbestplan(S)

if bestplan[S].cost 6= ∞ then
return bestplan[S];

else
//bestplan[S] has not been computed earlier, compute it now
foreach non-empty subset S1 of S such that S1 6= S do

P1 = findbestplan(S1);
P2 = findbestplan(S − S1);
A = best algorithm for joining results of P1 and P2;
cost = P1.cost + P2.cost + cost of A;
if cost < bestplan[S].cost then

bestplan[S].cost = cost;
bestplan[S].plan = “execute P1.plan;

execute P2.plan;
join results of P1 and P2 using A”;

end
end

end
return bestplan[S];

DMS 2010/11 J. Gamper 28/53

Cost of Optimization

◮ Cost-based optimization is expensive, but worthwhile for queries on large
datasets (typical queries have small number of operations, n; generally
n < 10)

◮ With dynamic programming, time complexity of optimization with bushy
trees is O(3n).

◮ With n = 10, this number is 59000 instead of 17.6 billion!

◮ Space complexity is O(2n)

DMS 2010/11 J. Gamper 29/53

Interesting Orders

◮ Consider the expression (r1 1 r2 1 r3) 1 r4 1 r5
◮ An interesting sort order is a particular sort order of tuples that could be

useful for a later operation.

◮ Generating the result of r1 1 r2 1 r3 sorted on the attributes common with
r4 or r5 may be useful, but generating it sorted on the attributes common to
only r1 and r2 is not useful.

◮ Using merge-join to compute r1 1 r2 1 r3 may be costlier, but may provide
an output sorted in an interesting order.

◮ Not sufficient to find the best join order for each subset of the n relations;
must find the best join order for each subset, for each interesting sort order

◮ Simple extension of algorithm above; usually, the number of interesting
orders is small and doesn’t affect time/space complexity significantly

DMS 2010/11 J. Gamper 30/53

Cost-Based Optimization Example

◮ Example: σCPR=0810643773(Emp)

◮ Statistics:
◮ |Emp| = 10, 000 tuples
◮ 5 tuples per block
◮ Secondary B+-tree index of depth 4 on CPR
◮ CPR is primary key

◮ Plan p1: full table scan
◮ cost(p1) = (10, 000/5)/2 = 1, 000 blocks

◮ Plan p2: B+-tree lookup
◮ cost(p2) = 4 + 1 = 5 blocks

DMS 2010/11 J. Gamper 31/53

Cost-Based Optimization Example . . .

◮ Example: σDNo>15(Emp)

◮ Statistics:
◮ |Emp| = 10,000 tuples
◮ 5 tuples per block
◮ Cluster index (primary index) on DNo of depth 2
◮ 50 different departments

◮ Plan p1: full table scan
◮ cost(p1) = 10, 000/5 = 2, 000 blocks

◮ Plan p2: cluster index search
◮ cost(p2) = 2 + (50 − 15)/50 ∗ (10, 000/5) = 1, 400 blocks

DMS 2010/11 J. Gamper 32/53

Cost-Based Optimization Example . . .

◮ Example: Emp 1DNo=DNum Dept

◮ Statistics:
◮ |Emp| = 10,000 tuples ; 5 Emp-tuples per block
◮ |Dept| = 125; 10 Dept-tuples per block
◮ Hash index on Emp(DNo)
◮ 4 EmpDept result tuples per block

◮ Plan p1: Block nested loop join with Emp as outer loop
◮ cost(p1) = (10.000/5) + (10.000/5) ∗ (125/10) + (10.000/4) = 30.500 IOs

◮ (10.000/4 is cost of writing final output)

◮ Plan p2: Indexed nested loop with Dept as outer loop and hashed lookup
in Emp

◮ cost(p2) = (125/10) + 125 ∗ (10.000/125/5) + (10.000/4) = 4.513 IOs
◮ 10.000/125/5 is the avg. number of blocks/department

DMS 2010/11 J. Gamper 33/53

Heuristic Optimization

◮ Cost-based optimization is expensive, even with dynamic programming.

◮ Systems may use heuristics to reduce the number of choices that must be
made in a cost-based fashion.

◮ Heuristic optimization transforms the query-tree by using a set of heuristic
rules that typically (but not in all cases) improve execution performance.

◮ Overall goal of heuristic rules:
◮ Try to reduce the size of (intermediate) relations as early as possible!

DMS 2010/11 J. Gamper 34/53

Heuristic Optimization . . .

◮ Heuristic rules
◮ Perform selection early (reduces the number of tuples)
◮ Perform projection early (reduces the number of attributes)
◮ Perform most restrictive selection and join operations before other similar

operations.

◮ Some systems use only heuristics, others combine heuristics with partial
cost-based optimization.

DMS 2010/11 J. Gamper 35/53

Heuristic Optimization . . .

◮ Example: Consider the expression σθ(r 1 s), where θ is on attributes in s
only.

◮ “Selection early” rule would push down the selection operator, producing
r 1 σθ(s).

◮ This is not necessarily the best plan if
◮ relation r is extremely small compared to s
◮ and there is an index on the join attributes of s,
◮ but there is no index on the attributes used by θ.

◮ The early select would require a scan of all tuples in s, which is probably
more expensive than the join!

DMS 2010/11 J. Gamper 36/53

Heuristic Optimization . . .

◮ Steps in typical heuristic optimization

1. Deconstruct conjunctive selections into a sequence of single selection
operations (Equiv. rule 1.).

2. Move selection operations down the query tree for the earliest possible
execution (Equiv. rules 2, 7a, 7b, 11).

3. Execute first those selection and join operations that will produce the
smallest relations (Equiv. rule 6).

4. Replace Cartesian product operations that are followed by a selection
condition by join operations (Equiv. rule 4a).

5. Deconstruct and move as far down the tree as possible lists of projection
attributes, creating new projections where needed (Equiv. rules 3, 8a, 8b,
12).

6. Identify those subtrees whose operations can be pipelined, and execute them
using pipelining.

DMS 2010/11 J. Gamper 37/53

Structure of Query Optimizers

◮ The System R/Starburst optimizer considers only left-deep join orders.
◮ Reduces optimization complexity (O(n!) to consider all plans)
◮ Generates plans amenable to pipelined evaluation; only the left input to each

join is pipelined.

◮ System R/Starburst also uses heuristics to push selections and projections
down the query tree.

◮ Heuristic optimization used in some versions of Oracle.

◮ For scans using secondary indexes, some optimizers consider the probability
that the page containing the tuple is in the buffer.

DMS 2010/11 J. Gamper 38/53

Structure of Query Optimizers . . .

◮ Some query optimizers integrate heuristic selection and the generation of
alternative access plans.

◮ System R/Starburst uses a hierarchical procedure based on the nested-block
concept of SQL: heuristic rewriting followed by cost-based join-order
optimization.

◮ Some Oracle versions work like this:
◮ For an n-way join, consider n evaluation plans, each plan using a left-deep

join order starting with a different one of the n relations.
◮ Heuristic: Construct the join order for each of these plans by repeatedly

selecting the best relation to join next, on the basis of the available access
paths (nested loop or sort-merge join, depending on indexes).

◮ Heuristic: Choose one of the n evaluation plans, based on minimizing the
number of nested-loop joins that do not have an index on the inner relation
and on the number of sort-merge joins.

DMS 2010/11 J. Gamper 39/53

Structure of Query Optimizers . . .

◮ Even with the use of heuristics, cost-based query optimization imposes a
substantial overhead.

◮ This expense is usually more than offset by savings at query-execution
time, particularly by reducing the number of slow disk accesses.

◮ Intricacies of SQL complicate query optimization further
◮ e.g. nested subqueries

DMS 2010/11 J. Gamper 40/53

Optimizing Nested Subqueries

◮ SQL conceptually treats nested subqueries in the where clause as functions
that take parameters and return a single value or set of values

◮ Parameters are variables from outer level query that are used in the nested
subquery; such variables are called correlation variables

◮ Example:

SELECT customer-name

FROM borrower

WHERE EXISTS (SELECT *

FROM depositor

WHERE depositor.customer-name

= borrower.customer-name)

◮ Conceptually, nested subquery is executed once for each tuple in the outer
level query

DMS 2010/11 J. Gamper 41/53

Optimizing Nested Subqueries . . .

◮ Evaluation of nested subqueries may be inefficient since

◮ a large number of calls may be made to the nested query (once for each
tuple in the out level query)

◮ there may be unnecessary random I/O as a result

◮ SQL optimizers try to transform nested subqueries to joins, enabling to use
efficient join techniques

◮ e.g., earlier nested query can be rewritten as

SELECT customer-name

FROM borrower, depositor

WHERE depositor.customer-name = borrower.customer-name

◮ In general, it is not possible to move the entire nested subquery
FROM-clause to the outer level FROM-clause

◮ Temporary relation is created instead and used in the outer level query

DMS 2010/11 J. Gamper 42/53

Materialized Views

◮ A materialized view is a view whose contents are computed and stored /
cached on disk.

◮ Consider the view

CREATE VIEW branch-total-loan(branch-name, total-loan) AS

SELECT branch-name, SUM(amount)

FROM loan

GROUP BY branch-name

◮ Materializing the above view would be very useful if the total loan amount
is required frequently

◮ Saves the effort of finding multiple tuples and adding up their amounts

◮ Materialization is a typical space/time tradeoff: We trade space for time.

DMS 2010/11 J. Gamper 43/53

Materialized View Maintenance

◮ Materialized view maintenance: Keeping a materialized view up-to-date
with the underlying data

◮ Two different methods to maintain materialized views:

◮ Re-computation on every update.
◮ A better option is incremental view maintenance: Changes to database

relations are used to compute changes to materialized view, which is then
updated.

◮ Incremental view maintenance can be done by
◮ Manually defining triggers on insert, delete, and update of each relation in

the view definition.
◮ Manually written code to update the view whenever database relations are

updated.
◮ Supported directly by the database.

DMS 2010/11 J. Gamper 44/53

Incremental View Maintenance

◮ The changes to a relation that can cause a materialized view to become
out-of-date are: insert, delete, and update.

◮ To simplify our description, we only consider inserts and deletes and replace
updates to a tuple by deletion of the tuple followed by insertion of the
update tuple.

◮ The changes (inserts and deletes) to a relation or expressions are referred
to as its differential.

◮ Set of tuples inserted to and deleted from a relation r are denoted ir and
dr , respectively.

◮ In the following we describe for each RA operation how to compute the
change/differential to the view, given changes to its inputs.

DMS 2010/11 J. Gamper 45/53

Incremental View Maintenance . . .

◮ Join: Consider the materialized view v = r 1 s and an update to r

◮ Let rold and rnew denote the old and new states of relation r

◮ Insert set of tuples ir to r:
◮ We can write rnew

1 s as (r old ∪ ir) 1 s
◮ and rewrite the above to (r old

1 s) ∪ (ir 1 s)
◮ But (r old

1 s) is simply the old value of the materialized view, so the
incremental change to the view is just ir 1 s

◮ Therefore, vnew = v old ∪ (ir 1 s)

◮ Delete set of tuples dr from r :
◮ We get in a similar way : vnew = v old − (dr 1 s)

DMS 2010/11 J. Gamper 46/53

Incremental View Maintenance . . .

◮ Selection: Consider a view v = σθ(r)

◮ Insert set of tuples ir to r : vnew = v old ∪ σθ(ir)
◮ Delete set of tuples dr from r : vnew = v old − σθ(dr)

◮ Projection is a more difficult operation
◮ Assume a relation r : R = (A, B) and r(R) = {(a, 2), (a, 3)}
◮ Consider view v = πA(r) which has a single tuple v = {(a)}.
◮ If we delete tuple (a, 2) from r , we should not delete tuple (a) from v ; but if

we then delete (a, 3) as well, we should delete the tuple.
◮ Therefore, for each tuple in a projection πA(r) , we keep a count of how

many times it was derived

◮ Insertion of a tuple to r : If the resultant tuple is already in πA(r), increment
its count; else add a new tuple with count = 1.

◮ Deletion of a tuple from r : Decrement the count of the corresponding tuple
in πA(r); if the count becomes 0, delete the tuple from πA(r).

DMS 2010/11 J. Gamper 47/53

Incremental View Maintenance . . .

◮ Aggregation – count: v =A Gcount(B)(r)

◮ Insertion of a set of tuples ir to r

◮ For each tuple t in ir : If the corresponding group is already present in v ,
increment its count; else add a new tuple (t.A, 1) to v .

◮ Deletion of a set of tuples dr from r

◮ For each tuple t in dr : Look for the group t.A in v and subtract 1 from the
count for the group. If the count becomes 0, delete from v the tuple for the
group t.A

◮ Aggregation – sum: v =A Gsum(B)(r)

◮ We maintain the sum in a manner similar to count, except we add/subtract
the B value instead of adding/subtracting 1 for the count

◮ Additionally we maintain the count in order to detect groups with no tuples.
Such groups are deleted from v .

◮ Cannot simply test for sum = 0 (why?)

DMS 2010/11 J. Gamper 48/53

Incremental View Maintenance . . .

◮ Aggregation – avg
◮ To handle the case of avg, we maintain the sum and count aggregate values

separately, and divide at the end

◮ Aggregation – min, max: v =A Gmin(B)(r)
◮ Handling insertions on r is straightforward.
◮ Maintaining the aggregate values min and max on deletions may be more

expensive. We have to look at the other tuples of r that are in the same
group to find the new minimum.

DMS 2010/11 J. Gamper 49/53

Incremental View Maintenance . . .

◮ Set intersection: v = r ∩ s

◮ Insertion of a tuple t into r : Check if t is present in s, and if so add tuple t
to v .

◮ Deletion of a tuple t from r : Delete tuple t from the intersection if it is
present.

◮ Updates to s are symmetric
◮ The other set operations, union and set difference are handled in a similar

fashion.

DMS 2010/11 J. Gamper 50/53

Query Optimization and Materialized Views

◮ Query optimization can be performed by treating materialized views just
like regular relations

◮ However, materialized views offer further opportunities for optimization.

◮ Rewriting queries to use materialized views:

◮ Suppose a materialized view v = r 1 s is available
◮ A user submits a query r 1 s 1 t
◮ We can rewrite the query as v 1 t

◮ Might provide a more efficient query plan
◮ Whether to do so depends on cost estimates for the two alternatives

DMS 2010/11 J. Gamper 51/53

Query Optimization and Materialized Views . . .

◮ Replacing a use of a materialized view by the view definition:

◮ A materialized view v = r 1 s is available, but without any index on it
◮ User submits a query σA=10(v).
◮ Suppose also that s has an index on the common attribute B, and r has an

index on attribute A.
◮ The best plan for this query may be to replace the view v by its definition

r 1 s, which can lead to the query plan σA=10(r) 1 s

◮ Query optimizer should be extended to consider all above alternatives and
choose the best overall plan.

DMS 2010/11 J. Gamper 52/53

Materialized View Selection

◮ Materialized view selection: “What is the best set of views to
materialize?”.

◮ This decision must be made on the basis of the system workload, i.e., a
sequence of queries and updates that reflect the typical load on the system.

◮ Indexes are just like materialized views; problem of index selection is
closely related to that of materialized view selection, although it is simpler.

◮ Some database systems, provide tools to help the database administrator
with index and materialized view selection

DMS 2010/11 J. Gamper 53/53

