
Database Management Systems 2010/11

– Chapter 4: Query Processing –

J. Gamper

◮ Overview

◮ Measures of Query Cost

◮ Selection Operation

◮ Sorting

◮ Join Operation

◮ Other Operations

◮ Evaluation of Expressions

These slides were developed by:
– Michael Böhlen, University of Zurich, Switzerland
– Johann Gamper, University of Bozen-Bolzano, Italy

DMS 2010/11 J. Gamper 1/48

Basic Steps in Query Processing

◮ One of the most important tasks of a DBMS is to figure out an efficient
evaluation plan (also termed execution plan or access plan) for high level
statements.

◮ It is particularly important to have evaluation strategies for
◮ Selection (search conditions)
◮ Joins (combining information in relational database)

◮ Query processing is a 3-step
process:

1. Parsing and translation
2. Optimization
3. Evaluation

DMS 2010/11 J. Gamper 2/48

Basic Steps in Query Processing . . .

◮ Step 1: Parsing and translation
◮ Translate the query into its internal form (query tree), which is then

translated into relational algebra (RA)
◮ Parser checks syntax and verifies relations
◮ Example:

◮ SELECT balance FROM account WHERE balance < 2500

might be translated into σbalance<2500 (Πbalance(account))

DMS 2010/11 J. Gamper 3/48

Basic Steps in Query Processing . . .

◮ Step 2: Optimization
◮ An RA-expression may have many equivalent expressions

◮ σbalance<2500 (Πbalance(account)) is equivalent to
Πbalance (σbalance<2500(account))

◮ Each RA-operation can be evaluated using one of several different
algorithms.

◮ Correspondingly, an RA-expression can be evaluated in many ways.

◮ Evaluation plan: Annotated RA-expression that specifies for each operator
detailed instructions on how to evaluate it.

◮ e.g., can use an index on balance to
find accounts with balance < 2500

◮ or can perform complete relation
scan and discard accounts with
balance ≥ 2500

Πbalance

|
σbalance<2500; use index 1
|
account

◮ Goal of query optimization: Amongst all equivalent evaluation plans
choose the one with lowest cost.

◮ Cost is estimated using statistical information from the database catalog,
e.g., number of tuples in each relation, size of tuples, etc.

DMS 2010/11 J. Gamper 4/48

Basic Steps in Query Processing . . .

◮ Step 3: Evaluation
◮ The query-execution engine takes an evaluation plan, executes that plan,

and returns the answers.

DMS 2010/11 J. Gamper 5/48

Overview

◮ In this chapter we study
◮ How to measure query cost
◮ Algorithms for evaluating relational algebra operations
◮ How to combine algorithms for individual operations in order to evaluate a

complete expression

◮ In Chapter 5 we study
◮ How to optimize queries, that is, how to find an evaluation plan with lowest

estimated cost.

DMS 2010/11 J. Gamper 6/48

Measures of Query Cost

◮ Query cost is generally measured as the total elapsed time for answering
a query.

◮ Many factors contribute to time cost and are considered in real DBMS,
including

◮ CPU cost and network communication
◮ Disk access

◮ Difference between sequential and random I/O

◮ Buffer Size
◮ Having more memory reduces need for disk access
◮ Amount of real memory available to buffer depends on other concurrent OS

procsesses, and hard to determine ahead of actual execution.
◮ We often use worst case estimates, assuming only the minimum amount of

memory needed for the operation is available

DMS 2010/11 J. Gamper 7/48

Measures of Query Cost . . .

◮ Typically disk access is the predominant cost, and is also relatively easy
to estimate. Measured by taking into account

◮ Number of seeks * average-seek-cost
◮ Number of blocks read * average-block-read-cost
◮ Number of blocks written * average-block-write-cost

◮ Cost to write a block is greater than cost to read a block, since data is read
back after being written to ensure that the write was successful

◮ For simplicity ,
◮ we just use number of block transfers from disk as the cost measure, and
◮ we do not include cost to writing output to disk

DMS 2010/11 J. Gamper 8/48

Selection Evaluation Strategies

◮ Here we study the evaluation of the selection operator:
◮ SELECT * FROM r WHERE θ
◮ σθ(r)

◮ The strategy/algorithm for the evaluation of the selection operator depends
mainly on the

◮ type of the selection condition
◮ available index structures

DMS 2010/11 J. Gamper 9/48

Selection Evaluation Strategies . . .

◮ File scan
◮ Class of search algorithms that locate and retrieve records that fulfill a

selection condition, i.e., σθ(r)
◮ Lowest-level operator to access data

DMS 2010/11 J. Gamper 10/48

Selection Evaluation Strategies . . .

◮ A1 – search: Scan each file block and test all records to see whether they
satisfy the selection condition.

◮ Expensive, but always applicable (regardless of indexes, ordering, selection
condition (σθ(r)), etc.)

◮ Cost estimate (br = number of blocks in file):
◮ Worst case: Cost = br

◮ Selection is on a key attribute: Average cost = br/2 (stop on finding record)

DMS 2010/11 J. Gamper 11/48

Selection Evaluation Strategies . . .

◮ A2 – Binary search: Apply binary search to locate records that satisfy
selection condition θ.

◮ Only applicable if
◮ the blocks of a relation are stored contiguously and
◮ the selection condition is an equality comparison on the attribute on which

the file is ordered, i.e., σA=v (r)

◮ Cost estimate:
◮ ⌈log2 br ⌉ – cost of locating the first tuple by a binary search on the blocks;
◮ plus the number of blocks containing records that satisfy θ.

DMS 2010/11 J. Gamper 12/48

Selection Evaluation Strategies . . .

◮ Index scan
◮ Class of search algorithms that use an index
◮ Selection condition must be on the search-key of the index
◮ Assume B+-tree index and equality conditions, i.e., σA=v (r)

DMS 2010/11 J. Gamper 13/48

Selection Evaluation Strategies . . .

◮ Equality queries: σA=v (r)

◮ A3 – Primary index + equality on candidate key
◮ Retrieve a single record that satisfies the equality condition
◮ Cost = HTi + 1 (i.e., height of B+-tree index blocks + 1 data block)

◮ A4 – Primary index + equality on non-key
◮ Retrieve multiple records, where records are on consecutive blocks
◮ Cost = HTi + #blocks with retrieved records

◮ A5 – Secondary index + equality on search-key
◮ Retrieve a single record if the search-key is a candidate key

◮ Cost = HTi + 1
◮ Retrieve multiple records if search-key is not a candidate key

◮ Cost = HTi + #retrieved records + #buckets with search-key value
◮ Can be very expensive, since each record may be on a different block
◮ Linear file scan may be cheaper if many records are to be fetched!

DMS 2010/11 J. Gamper 14/48

Selection Evaluation Strategies . . .

◮ Range queries: σA≤v (r) or σA≥v (r)
◮ Can be implemented by using

◮ linear file scan (A1)
◮ binary search (A2)
◮ or using indices (see below)

◮ A6 – Primary index on A + comparison condition
◮ σA≥v : Use index to find first tuple with A ≥ v ; then scan relation

sequentially
◮ σA≤v : Scan relation sequentially till first tuple with A > v ; do not use index.

◮ A7 – Secondary index on A + comparison condition
◮ σA≥v : Use index to find first index entry with A ≥ v ; scan index sequentially

from there, to find pointers to records.
◮ σA≤v : Scan leaf pages of index finding rec. pointers till first entry with A > v
◮ Requires in the worst case one I/O for each record; linear file scan may be

cheaper if many records are to be fetched!

DMS 2010/11 J. Gamper 15/48

Selection Evaluation Strategies . . .

◮ Conjunctive selection: σθ1∧θ2∧···∧θn
(r)

◮ A8 – Conjunctive selection using one index
◮ Choose a θi and one of the algorithms A3 through A7 that results in the

least cost for σθi
(r).

◮ Test the other conditions on tuple after fetching it into memory buffer.
◮ Cost = cost of selected algorithm from A3 to A7

◮ A9 – Conjunctive selection using multiple-key index
◮ Use appropriate composite (multiple-key) index if available.

◮ A10 – Conjunctive selection by intersection of identifiers
◮ Requires indexes with record pointers/identifiers.
◮ Use corresponding index for each condition, and take intersection of all the

obtained sets of record pointers.
◮ Then fetch records from file that are in the intersection
◮ If some conditions do not have indexes, apply test in memory.
◮ Cost = sum of individual index scans + cost of retrieving records

DMS 2010/11 J. Gamper 16/48

Selection Evaluation Strategies . . .

◮ Disjunctive selection: σθ1∨θ2∨···∨θn
(r)

◮ A11 – Disjunctive selection by union of identifiers
◮ Use corresponding index for each condition, and take union of all the

obtained sets of record pointers.
◮ Then fetch records from file.
◮ Applicable only if all conditions have available indices; otherwise use linear

scan.

DMS 2010/11 J. Gamper 17/48

Selection Evaluation Strategies . . .

◮ Negation: σ¬θ(r)
◮ Use linear scan on file
◮ If very few records satisfy ¬θ and an index is applicable to θ, find satisfying

records using index and fetch from file.

DMS 2010/11 J. Gamper 18/48

Sorting

◮ Sorting is important for for several reasons:
◮ SQL queries can specify that the output be sorted
◮ Several relational operations can be implemented efficiently if the input

relations are first sorted, e.g. joins

◮ We may build an index on the relation, and then use the index to read the
relation in sorted order.

◮ Sorting is only logically and not physically, which might lead to one disk
block access for each tuple (can be expensive!)

◮ ⇒ It may be desirable to order the records physically.

◮ Relation fits in memory: Use techniques like quicksort

◮ Relation does not fit in main memory: Use external sorting, e.g., external
sort-merge is a good choice

DMS 2010/11 J. Gamper 19/48

External Sort-Merge

◮ Step 1: Create N sorted runs (M is # blocks in buffer)

1. i ← 0
2. Repeatedly do the following till the end of the relation

2.1 Read M blocks of the relation (or the rest) into memory
2.2 Sort the in-memory blocks
2.3 Write sorted data to run file Ri ;
2.4 Increment i .

◮ Step 2: Merge runs (N-way merge) (assume N < M)
(Use N blocks in memory to buffer input runs, and 1 block to buffer
output)

1. Read the first block of each run Ri into its buffer page
2. Repeat until all input buffer pages are empty

2.1 Select the first record (in sort order) among all buffer pages
2.2 Write the record to the output buffer; if output buffer is full write it to disk.
2.3 Delete the record from its input buffer page.
2.4 If the buffer page becomes empty

then read the next block (if any) of the run into the buffer

DMS 2010/11 J. Gamper 20/48

External Sort-Merge . . .

◮ If N ≥ M, several merge passes (step 2) are required:
◮ In each pass, contiguous groups of M − 1 runs are merged
◮ A pass reduces the number of runs by a factor of M − 1, and creates runs

longer by the same factor.
◮ E.g. If M = 11, and there are 90 runs, one pass reduces the number of runs

to 9, each run being 10 times the size of the initial runs

◮ Repeated passes are performed till all runs have been merged into one.

DMS 2010/11 J. Gamper 21/48

External Sort-Merge . . .

◮ Example: M = 3, 1 block = 1 tuple

DMS 2010/11 J. Gamper 22/48

External Sort-Merge . . .

◮ Cost analysis
◮ Initial number of runs: br/M
◮ Total number of merge passes required: ⌈logM−1(br/M)⌉

◮ The number of runs decreases by a factor of M − 1 in each merge pass
◮ Disk accesses for initial run creation and in each pass is 2br

◮ Exception: For final pass, we don’t count write cost
◮ We ignore final write cost for all operations since the output of an operation

may be sent to the parent operation without being written to disk

◮ Total number of disk accesses: Cost = br (2⌈logM−1(br/M)⌉+ 1)

◮ Example: Cost analysis of previous example
◮ 12 (2 * 2 + 1) = 60 disk block transfers

DMS 2010/11 J. Gamper 23/48

Join Operation

◮ Several different algorithms for the evaluation of join operation
◮ Nested-loop join
◮ Block nested-loop join
◮ Indexed nested-loop join
◮ Merge-join
◮ Hash-join

◮ The choice of the algorithm is based on a cost estimate

◮ Examples use the following relations:
◮ Relation customer:

◮ Schema: customer = (customer-name, customer-street, customer-city)
◮ Number of records: nc = 10, 000
◮ Number of blocks: bc = 400

◮ Relation depositor:
◮ Schema: depositor = (customer-name, account-number)
◮ Number of records: nd = 5, 000
◮ Number of blocks: bd = 100

DMS 2010/11 J. Gamper 24/48

Nested-Loop Join

◮ Compute the theta join: r 1θ s

foreach tuple tr in r do
foreach tuple ts in s do

if pair (tr , ts) satisfies θ then
Add tr ◦ ts to the result

end
end

end

◮ r is called the outer relation, s the inner relation of the join.

◮ Always applicable. Requires no indices and can be used with any kind of
join condition.

◮ Expensive since it examines every pair of tuples.

DMS 2010/11 J. Gamper 25/48

Nested-Loop Join . . .

◮ Order of r and s are important: Relation r is read once, relation s is read
up to |r | times

◮ Worst case: Only one block of each relation fits in main memory

Cost = nr ∗ bs + br

◮ If the smaller relation fits entirely in memory, use that as the inner relation

Cost = br + bs

◮ Example: Assuming worst case memory availability
◮ Depositor as outer relation: 5,000 * 400 + 100 = 2,000,100 block access.
◮ Customer as outer relation: 10,000 * 100 + 400 = 1,000,400 block accesses.
◮ Smaller relation (depositor) fits entirely in memory: 400 + 100 = 500 block

accesses.

DMS 2010/11 J. Gamper 26/48

Block Nested-Loop Join

◮ Variant of nested-loop join in which every block of the inner relation is
paired with every block of the outer relation.

foreach block Br of r do
foreach block Bs of s do

foreach tuple tr in Br do
foreach tuple ts in Bs do

if pair (tr , ts) satisfies θ then
Add tr ◦ ts to the result

end
end

end
end

end

DMS 2010/11 J. Gamper 27/48

Block Nested-Loop Join . . .

◮ Worst case: Cost = br ∗ bs + br

◮ Each block in the inner relation s is read once for each block in the outer
relation (instead of once for each tuple in the outer relation)

◮ Best case: Cost = br + bs

◮ Improvements to nested loop and block nested loop algorithms (M is the
number of main memory blocks):

◮ Block nested-loop: Use M − 2 disk blocks for outer relation and two blocks
to buffer inner relation and output; join each block of the inner relation with
M − 2 blocks of the outer relation.

◮ Cost = ⌈br/(M − 2)⌉ ∗ bs + br

◮ If equi-join attribute forms a key on inner relation, stop inner loop on first
match.

◮ Scan inner loop forward and backward alternately, to make use of the blocks
remaining in buffer (with LRU replacement).

DMS 2010/11 J. Gamper 28/48

Indexed Nested-Loop Join

◮ Index lookups can replace file scans if
◮ join is an equi-join or natural join and
◮ an index is available on the inner relation’s join attribute

◮ can construct an index just to compute a join

◮ For each tuple tr in the outer relation r , use the index to look up the tuples
in s that satisfy the join condition with tuple tr .

◮ Worst case: Buffer has space for only one page of r , and, for each tuple in
r perform an index lookup on s.

◮ Cost = nr ∗ c + br

◮ where c is the cost of traversing index and fetching all matching s tuples for
one tuple of r

◮ c can be estimated as cost of a single selection on s using the join condition.

◮ If indexes are available on join attributes of both r and s, use relation with
fewer tuples as the outer relation.

DMS 2010/11 J. Gamper 29/48

Indexed Nested-Loop Join . . .

◮ Example: Compute depositor 1 customer , with depositor as the outer
relation.

◮ Let customer have a primary B+-tree index on the join attribute
customer -name, which contains 20 entries in each index node.

◮ Since customer has 10,000 tuples, the height of the tree is 4, and one more
access is needed to find the actual data

◮ depositor has 5,000 tuples and 100 blocks
◮ Indexed nested loops join:

◮ Cost = 5, 000 ∗ 5 + 100 = 25, 100 disk accesses.
◮ Block nested loops join:

◮ Cost = 100 ∗ 400 + 100 = 40, 100 disk accesses assuming worst case memory
◮ May be significantly less with more memory

DMS 2010/11 J. Gamper 30/48

Merge-join

◮ Basic idea of merge-join (sort-merge join): Use two pointers pr and ps

that are initialized to the first tuple in r and s and move in a synchronized
way through the sorted relations.

◮ Algorithm

1. Sort both relations on their join attributes
(if not already sorted on the join attr.).

2. Scan r and s in sort order and return
matching tuples.

3. Move the tuple pointer of the relation
that is less far advanced in sort order
(more complicated if the join attributes
are not unique - every pair with same
value on join attribute must be matched).

DMS 2010/11 J. Gamper 31/48

Merge-join . . .

◮ Applicable for equi-joins and natural joins only

◮ If all tuples for any given value of the join attributes fit in memory
◮ One file scan of r and s is enough
◮ Cost = br + bs (+ the cost of sorting if relations are not sorted)

◮ Otherwise, a block nested-loop join must be performed between the tuples
with the same attributes

DMS 2010/11 J. Gamper 32/48

Merge-join . . .

◮ Variations of merge-join exist

◮ Secondary indexes on join attribute(s) exist for both relations.
◮ Scan the records through the indexes.
◮ Drawback: Records may be scattered throughout the file blocks

◮ Hybrid merge-join: One relation is sorted, and the other has a secondary
B+-tree index on the join attribute

◮ Merge the sorted relation with the leaf entries of the B+-tree.
◮ Intermediate result contains tuples of sorted relation and addresses of the

tuples of the unsorted relation.
◮ Sort the intermediate result on the addresses of the unsorted relation’s tuples
◮ Scan the unsorted relation in physical address order and merge with previous

result, to replace addresses by the actual tuples.

DMS 2010/11 J. Gamper 33/48

Hash-Join

◮ Applicable for equi-joins and natural joins only.

◮ Partition tuples of r and s using the same
hash function h, which maps the values of
the join attributes to the set {0, 1, ..., n}

◮ Partitions of r-tuples: r0, r1, ..., rn
◮ all tr ∈ r with h(tr [JoinAttrs]) = i are

put in ri
◮ Partitions of s-tuples: s0, s1, .., sn

◮ all ts ∈ s with h(ts [JoinAttrs]) = i are
put in si

◮ r -tuples in ri need only to be compared
with s-tuples in si

◮ an r -tuple and s-tuple that satisfy the join
condition have the same hash value i , and
are mapped to ri and si , respectively.

DMS 2010/11 J. Gamper 34/48

Hash-Join . . .

◮ Algorithm for the hash-join of r and s

1. Partition the relation s using hash function h. (when partitioning a relation,
one block of memory is reserved as the output buffer for each partition)

2. Partition r similarly.
3. For each i :

3.1 Load si into memory and build an in-memory hash index on it using the join
attribute (this hash index uses a different hash function than h).

3.2 Read the tuples in ri from the disk (block by block). For each tuple tr locate
each matching tuple ts in si using the in-memory hash index. Output the
concatenation of their attributes as result tuple.

◮ Relation s is called the build input and r is called the probe input.

DMS 2010/11 J. Gamper 35/48

Hash-Join . . .

◮ Hash-table overflow occurs in partition si if si does not fit in memory.
Reasons could be

◮ Many tuples in s with same value for join attributes
◮ Bad hash function

◮ Two ways to handle overflow
◮ Overflow resolution can be done in build phase

◮ Partition si is further partitioned using different hash function. Partition ri
must be similarly partitioned.

◮ Overflow avoidance performs partitioning carefully to avoid overflows
◮ Initially, build many small partitions of s, then combine some partitions s.t.

they still fit into main memory. Partition r in the same way, but the size of
partitions ri does not matter.

◮ Both approaches fail with large numbers of duplicates
◮ Fallback option: Block nested loops join on overflowed partitions

DMS 2010/11 J. Gamper 36/48

Hash-Join . . .

◮ Cost analysis of hash join
◮ Partitioning of the two relations: 2 ∗ (br + bs)

◮ Complete reading of the two relations plus writing back

◮ The build and probe phases read each of the partitions once: br + bs

◮ The number of blocks occupied by the nh partitions could be slightly more
than br + bs due to partially filled blocks (at most one in each partition)
⇒ Overhead: 2 ∗ nh for each of the two relations

◮ Total cost: Cost = 3 ∗ (br + bs) + 4 ∗ nh

◮ Overhead 4 ∗ nh is quite small compared to br + bs and can be ignored.

DMS 2010/11 J. Gamper 37/48

Hash-Join . . .

◮ Example: Join customer 1 depositor

◮ Assume that memory size is 20 blocks
◮ bd = 100 and bc = 400
◮ depositor is to be used as build input. Partition it into five partitions, each

of size 20 blocks. This partitioning can be done in one pass.
◮ Similarly, partition customer into five partitions, each of size 80. This is also

done in one pass.
◮ Partition size of probe relation needs not to fit into main memory!

◮ Therefore total cost: 3 ∗ (100 + 400) = 1500 block transfers
◮ Ignores cost of writing partially filled blocks
◮ Compare this to 25,100 block transfers of indexed nested loop join!

DMS 2010/11 J. Gamper 38/48

Complex Joins

◮ Join with a conjunctive condition: r 1θ1∧θ2∧···∧θn
s

◮ Either use nested loops/block nested loops, or
◮ Compute the result of one of the simpler joins r 1θi

s using a more efficient
strategy; final result comprises those tuples in the intermediate result that
satisfy the remaining conditions θ1 ∧ · · · ∧ θi−1 ∧ θi+1 ∧ · · · ∧ θn

◮ Join with a disjunctive condition: r 1θ1∨θ2∨···∨θn
s

◮ Either use nested loops/block nested loops, or
◮ Compute as the union of the records in individual joins r 1θi

s, i.e.,
(r 1θ1 s) ∪ · · · ∪ (r 1θn s)

DMS 2010/11 J. Gamper 39/48

Other Operations

◮ Duplicate elimination: Can be implemented via hashing or sorting
◮ On sorting duplicates will come adjacent to each other, and all but one set

of duplicates can be deleted.
◮ Hashing is similar - duplicates will come into the same bucket.

◮ Projection: Implemented by performing projection on each tuple followed
by duplicate elimination.

◮ Aggregation: Can be implemented in a manner similar to duplicate
elimination.

◮ Sorting or hashing can be used to bring tuples in the same group together;
then the aggregate functions are applied on each group.

DMS 2010/11 J. Gamper 40/48

Other Operations . . .

◮ Set operations (∪,∩ and −): Can either use variant of merge-join after
sorting or variant of hash-join.

◮ Algorithm for set operations on r and s using hashing:

1. Partition r and s using the same hash function, thereby creating r1, . . . , rn
and s1, . . . , sn

2. Process each partition i as follows:

◮ Read ri and build an in-memory hash index on ri using a different hash
function.

◮ Read si and do the following:
r ∪ s: Add tuples in si to the hash index if they are not already in it.

At end of si add the tuples in the hash index to the result.
r ∩ s: Output tuples in si to the result if they are in the hash index.
r \ s: For each tuple in si , if it is in the hash index, delete it from the

index. At end of si add the remaining tuples in the hash index
to the result.

DMS 2010/11 J. Gamper 41/48

Evaluation of Expressions

◮ Evaluation of complex expressions that contain multiple operations
(represented as expression tree)

◮ Materialization: Generate results of an (sub-)expression whose inputs are
relations or are already computed, materialize (store) it on disk. Repeat
this process in a bottom up fashion.

◮ Pipelining: Evaluate several operations simultaneously by passing on tuples
to parent operations even as an operation is being executed.

DMS 2010/11 J. Gamper 42/48

Materialization

◮ Materialized evaluation
◮ Evaluate one operation at a time, starting at the lowest-level.
◮ Use intermediate results materialized into temporary relations to evaluate

next-level operations.

◮ Example: Evaluate the expression in the figure below.

1. Compute and store σbalance<2500

2. Then compute and store its join with customer
3. Finally, compute the projections on customer-name.

DMS 2010/11 J. Gamper 43/48

Materialization . . .

◮ Materialized evaluation is always applicable.

◮ Cost analysis
◮ Cost = cost of individual operations +

cost of writing intermediate results to disk
◮ Cost of writing results to disk and reading them back can be quite high
◮ Our cost formulas for operations ignore cost of writing results to disk

◮ Double buffering: Use two output buffers for each operation, when one is
full write it to disk while the other is getting filled

◮ Allows overlap of disk writes with computation and reduces execution time.

DMS 2010/11 J. Gamper 44/48

Pipelining

◮ Pipelined evaluation: Evaluate several operations simultaneously, passing
the results of one operation on to the next

◮ Example:
◮ Do not store the result of σbalance<2500

◮ Instead, pass tuples directly to the join.
◮ Similarly, don’t store result of join, pass tuples directly to projection

DMS 2010/11 J. Gamper 45/48

Pipelining . . .

◮ Much cheaper than materialization: No need to store a temporary relation
to disk.

◮ Pipelining may not always be possible
◮ Some evaluation algorithms are not able to generate result tuples even as

they get input tuples, e.g., merge join, or hash join
◮ They produce intermediate results being written to disk and then read back

always
◮ Algorithm variants are possible to generate (at least some) results on the fly,

as input tuples are read in.

◮ Two types of pipelining
◮ Demand driven
◮ Producer driven

DMS 2010/11 J. Gamper 46/48

Pipelining . . .

◮ Demand driven (or lazy) evaluation
◮ System repeatedly requests next tuple from top level operation
◮ Each operation requests next tuple from children operations as required, in

order to output its next tuple
◮ In between calls, operation has to maintain the ”state” to know what to

return next
◮ Each operation is implemented as an iterator with the following operations

◮ open():
e.g., for file scan: initialize file scan, store pointer to beginning of file as state
e.g., for merge join: sort relations and store pointers to beginning of sorted
relations as state

◮ next():
e.g., for file scan: Output next tuple, and advance and store file pointer
E.g. for merge join: continue with merge from earlier state till next output
tuple is found. Save pointers as iterator state.

◮ close()

DMS 2010/11 J. Gamper 47/48

Pipelining . . .

◮ Producer driven (or eager) pipelining
◮ Operators produce tuples eagerly and pass them up to their parents

◮ Buffer maintained between operators, child puts tuples in buffer, parent
removes tuples from buffer.

◮ If buffer is full, child waits till there is space in the buffer, and then generates
more tuples.

◮ System schedules operations that have space in output buffer and can
process more input tuples.

DMS 2010/11 J. Gamper 48/48

