
Database Management Systems 2010/11

– Chapter 2: Storage and File Structure –

J. Gamper

◮ Overview of Physical Storage Media

◮ Magnetic Disks

◮ Storage Access

◮ File Organization

◮ Organization of Records in Files

◮ Data-Dictionary Storage

These slides were developed by:
– Michael Böhlen, University of Zurich, Switzerland
– Johann Gamper, University of Bozen-Bolzano, Italy

DMS 2010/11 J. Gamper 1/39



Physical Storage Media/1

◮ Several types of storage media exist in computer systems and must be
considered when studying DBMS

◮ Classification of Storage media
◮ Speed with which data can be accessed
◮ Cost per unit of data
◮ Reliability

◮ data loss on power failure or system crash
◮ physical failure of the storage device

◮ Volatile vs. non-volatile storage
◮ Volatile storage: Loses contents when power is switched off
◮ Non-Volatile storage: Contents persist even when power is switched off

DMS 2010/11 J. Gamper 2/39



Physical Storage Media/2

◮ Cache
◮ Volatile
◮ Fastest and most costly form of storage
◮ Managed by the computer system hardware

◮ Main memory
◮ Volatile
◮ Fast access (10s to 100s of nanosecs; 1 nanosec = 10−9 secs)
◮ Generally too small (or too expensive) to store the entire DB

◮ Capacities of up to a few Gigabytes widely used currently
◮ Capacities have gone up and per-byte costs have decreased steadily and

rapidly (roughly factor of 2 every 2 to 3 years)

DMS 2010/11 J. Gamper 3/39



Physical Storage Media/3

◮ Flash memory
◮ Non-volatile
◮ Reads are roughly as fast as main memory
◮ Writes are slow (few microseconds) and more complicated

◮ Data cannot be overwritten, but need first to be erased
◮ Only a limited number of write/erase cycles is supported

◮ Cost per unit of storage roughly similar to main memory
◮ Widely used in embedded devices such as digital cameras
◮ Also known as EEPROM (Electrically Erasable Programmable Read-Only

Memory)

DMS 2010/11 J. Gamper 4/39



Physical Storage Media/4

◮ Magnetic disk
◮ Non-volatile
◮ Data is stored on spinning disk, and read/written magnetically
◮ Much slower access than main memory
◮ Much larger capacities than main memory; typically up to roughly 100 GB

◮ Growing rapidly with technology improvements (factor 2 to 3 every 2 years)
◮ Primary medium for the long-term storage of data

◮ Data must be moved from disk to main memory for access, and written back
for storage

◮ Direct data access, i.e., data on disk can be read in any order (unlike
magnetic tape)

◮ Hard disks vs. floppy disks

DMS 2010/11 J. Gamper 5/39



Physical Storage Media/5

◮ Optical disk
◮ Non-volatile
◮ Data is read optically from a spinning disk using a laser
◮ Reads and writes are slower than with magnetic disk
◮ Different types

◮ CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms
◮ Write-one, read-many (WORM) optical disks used for archival storage
◮ Multiple write versions also available (CD-RW, DVD-RW, and DVD-RAM)

◮ Juke-box systems, with large numbers of removable disks, a few drives, and
a mechanism for automatic loading/unloading of disks available for storing
large volumes of data

DMS 2010/11 J. Gamper 6/39



Physical Storage Media/6

◮ Tape storage
◮ Non-volatile
◮ Much slower than disk due to sequential access only
◮ Very high capacity (40 to 300 GB tapes available)
◮ Used primarily for backup and for archival data
◮ Tape can be removed from drive storage costs much cheaper than disk
◮ Tape juke-boxes available for storing massive amounts of data

◮ Hundreds of terabytes (1 terabyte = 1012 bytes) to even a petabyte (1
petabyte = 1015 bytes)

DMS 2010/11 J. Gamper 7/39



Physical Storage Media/6

◮ The storage media can be organized in a hierarchy according to their
speed and cost

◮ Primary storage: fastest media, but
volatile

◮ e.g., cache, main memory

◮ Secondary storage: non-volatile,
moderately fast access

◮ e.g., flash memory, magnetic disks
◮ also called on-line storage

◮ Tertiary storage: non-volatile, slow access
time

◮ e.g., magnetic tape, optical storage
◮ also called off-line storage

◮ DBMS must explicitly deal with storage media at all levels of the hierarchy

DMS 2010/11 J. Gamper 8/39



Magnetic Hard Disks/1

◮ Most DBs are stored on magnetic disks for the following reasons:
◮ Generally, DBs are too large to fit entirely in main memory
◮ Data on disks is non-volatile
◮ Disk storage is cheaper than main memory

◮ Simplified and schematic structure of a magnetic disk

DMS 2010/11 J. Gamper 9/39



Magnetic Hard Disks/2

◮ Disk controller: Interface between the computer system and the HW of
the disk drive. Performs the following tasks:

◮ Translates high-level commands, such as read or write a sector, into actions
of the disk HW, such as moving the disk arm or reading/writing the ector.

◮ Adds a checksum to each sector
◮ Ensures successful writing by reading back a sector after writing it

DMS 2010/11 J. Gamper 10/39



Magnetic Hard Disks/3

◮ Performance measures of hard disks
◮ Access time: the time it takes from when a read or write request is issued

to when the data transfer begins; is composed of:
◮ Seek time: time it takes to reposition the arm over the correct track
◮ Avg. seek time is 1/2 the worst case seek time (2-10 ms on typical disks)
◮ Rotational latency: time it takes for the sector to be accessed to appear

under the head
◮ Avg. seek time is 1/2 the worst case seek time (e.g., 4-11 ms for 5400-15000

r.p.m.)

◮ Data-transfer rate: rate at which data can be retrieved from or stored to
disk (e.g., 25-100 MB/s)

◮ Multiple disks may share a single controller
◮ Mean time to failure (MTTF): average time the disk is expected to run

continuously without any failure
◮ Typically several years

DMS 2010/11 J. Gamper 11/39



Blocks and Storage Access/1

◮ Block: a logical unit consisting of a fixed number of contiguous sectors
from a single track

◮ A block is a unit of storage allocation and data transfer
◮ Data between disk and main memory is transferred in blocks
◮ A database file is partitioned into fixed-length blocks
◮ Typical size ranges from 4 to 16 kilobytes

◮ Smaller blocks: more transfers from disk
◮ Larger blocks: more space wasted due to partially filled blocks

DMS 2010/11 J. Gamper 12/39



Blocks and Storage Access/2

◮ One of the major goals of a DBMS is to make the transfer of data
between disk and main memory as efficient as possible.

◮ Two ways:
1. Optimize/Minimize the disk-block access time

◮ Disk-arm-scheduling
◮ Appropriate file organization
◮ Write buffers
◮ Log disks

2. Keep as many blocks as possible in memory (→ buffer manager),thus
minimize the number of block transfers

DMS 2010/11 J. Gamper 13/39



Optimization of Disk-Block Access/1

◮ Disk-arm-scheduling: Order pending accesses to tracks so that disk arm
movement is minimized.

◮ Elevator algorithm

1. Disk controller orders the requests by track in one direction (from outer to
inner or vice versa)

2. Move disk arm in the direction of the ordering and process the next request
until no more requests in that direction exist

3. Reverse the direction and go to step 1

DMS 2010/11 J. Gamper 14/39



Optimization of Disk-Block Access/2

◮ File organization: Optimize block access time by organizing the blocks to
correspond to how data will be accessed, e.g., store related information on
the same or nearby cylinders.

◮ Files may get fragmented over time
◮ e.g., if data is inserted to or deleted from the file
◮ Or free blocks on disk are scattered, and newly created file has its blocks

scattered over the disk
◮ Sequential access to a fragmented file results in increased disk arm

movement

◮ Some systems have utilities to defragment the file system, in order to
speed up file access

DMS 2010/11 J. Gamper 15/39



Optimization of Disk-Block Access/3

◮ Non-volatile write buffers: Speed up disk writes by writing blocks to a
non-volatile, battery backed up RAM or flash memory immediately; the
controller then writes to disk whenever the disk has no other requests or
request has been pending for some time.

◮ Even if power fails, the data is safe.
◮ Writes can be reordered to minimize disk arm movement.
◮ Database operations that require data to be safely stored before continuing

can continue immediately.

DMS 2010/11 J. Gamper 16/39



Optimization of Disk-Block Access/4

◮ Log disk: A disk devoted to write a sequential log of block updates.
◮ Used exactly like non-volatile RAM
◮ Writing to log disk is very fast since no seeks are required
◮ No need for special hardware (NV-RAM), thus less expensive

DMS 2010/11 J. Gamper 17/39



Buffer Manager

◮ Buffer: Portion of main memory available to store copies of disk blocks
(when they are transferred from disk).

◮ Buffer Manager: Subsystem of DBMS that is responsible for buffering
disk blocks in main memory with the overall goal to minimize the number
of disk accesses (similar to a virtual-memory manager of an OS).

◮ Programs call the buffer manager when they need a block from disk.

◮ Buffer manager algorithm
1. If the block is already in the buffer:

◮ The requesting program is given the address of the block in main memory.

2. If the block is not in the buffer:
◮ The buffer manager allocates space in the buffer for the new block

(replacing/throwing out some other block, if required).
◮ The block that is thrown out is written back to disk only if it was modified

since the most recent time that it was written to/fetched from the disk.
◮ Once space is allocated in the buffer, the buffer manager reads the block

from the disk to the buffer, and passes the address of the block in memory to
the requesting program.

◮ Different buffer replacement strategies/policies exist.

DMS 2010/11 J. Gamper 18/39



Buffer-Replacement Policies/1

◮ LRU strategy: Replace the block least recently used.
◮ Idea: Use past pattern of block references to predict future references.
◮ Applied successfully by most operating systems.

◮ MRU strategy: Replace the block most recently used.

◮ LRU can be a bad strategy in DBMS for certain access patterns involving
repeated scans of data.

◮ Queries in DBs have well-defined access patterns (such as sequential
scans), and a database system can use the information in a user’s query to
predict future references.

DMS 2010/11 J. Gamper 19/39



Buffer-Replacement Policies/2

◮ Example: compute a join r 1 s with a nested loop evaluation strategy

for eah tuple tr of r do

for eah tuple ts of s do

if the tuples tr and ts match then ...

◮ Different access pattern for r and s

◮ An r -block is no longer needed after the last tuple in the block is processed
(even if it has been used recently), thus should be removed immediately.

◮ An s-block is needed again after all other s-blocks are processed, thus MRU
is the best strategy.

◮ A mixed strategy with hints on replacement strategy provided by the query
optimizer is preferable.

DMS 2010/11 J. Gamper 20/39



Buffer-Replacement Policies/3

◮ Pinned block: Memory block that is not allowed to be written back to
disk (as long as it is pinned).

◮ e.g., the r -block before processing the last tuple tr

◮ Toss-immediate strategy: Frees the space occupied by a block as soon as
the final tuple of that block has been processed.

◮ e.g., the r -block after processing the last tuple tr

◮ MRU + pinned block is the best choice for the nested-loop join

DMS 2010/11 J. Gamper 21/39



Buffer-Replacement Policies/4

◮ Buffer-replacement policies in DBMS can use various information
◮ Queries have well-defined access patterns (e.g., sequential scan)
◮ Information in a query to predict future references
◮ Statistical information regarding the probability that a request will

reference a particular relation.
◮ e.g., the data dictionary is frequently accessed;
◮ hence, keeping data-dictionary blocks in main memory buffer is a good

heuristic

DMS 2010/11 J. Gamper 22/39



File Organization

◮ File: A file is logically a sequence of records, where
◮ a record is a sequence of fields;
◮ the file header contains information about the file.

◮ Usually, a relational table is mapped to a file and a tuple to a record.

◮ A DBMS has the choice to
◮ use the file system of the operating system (reuse of code);
◮ manage disk space on its own (OS independent, better optimization, e.g.,

Oracle)

◮ Two approaches to represent files on disk blocks:
◮ fixed length records
◮ variable length records

DMS 2010/11 J. Gamper 23/39



Fixed-Length Records/1

◮ Example: Consider a bank application with an account relation that stores
the following account records:

type account = reord

account-number: har(10);

branch-name: har(22);

balance: real;

end

DMS 2010/11 J. Gamper 24/39



Fixed-Length Records/2

◮ Fixed-length records store record i

starting from byte n ∗ (i − 1), where n is
the size of each record.

◮ Record access is simple but records may
cross blocks.

◮ Deletion of record i is more complicated.
Several alternatives exist:

◮ move records i + 1, . . . , n to i , . . . , n − 1;
◮ move record n to i ;
◮ do not move records, but link all free

records on a free list.

DMS 2010/11 J. Gamper 25/39



Fixed-Length Records/3

◮ Free list
◮ Store the address of the first deleted

record in the file header.
◮ Use this first record to store the address

of the second deleted record, and so on

◮ Note the additional field to store pointers!

◮ More space efficient representation is
possible

◮ Hint: No pointers are stored in records
that contain data.

DMS 2010/11 J. Gamper 26/39



Variable-Length Records/1

◮ Variable-length records arise in DBMS in several ways:
◮ Storage of multiple record types in a file.
◮ Records types that allow variable lengths for one or more fields.
◮ Record types that allow repeating fields (used in some older models).

◮ Different methods to represent variable-length records

1. Byte string representation
2. Slotted page structure
3. Fixed-length representation with reserved space
4. Fixed-length representation with pointers (list representation)

DMS 2010/11 J. Gamper 27/39



Variable-Length Records/2

◮ Example: Bank application with an account relation, where one
variable-length record is used for each branch name and all the account
information for that branch.

type account-list =

reord

branch-name: har(22);

account-info: array[1..n] of

reord

account-number: har(10);

balance: real;

end

end

DMS 2010/11 J. Gamper 28/39



Variable-Length Records/3

◮ Byte string representation
◮ Attach an end-of-record (⊥) control character to the end of each record
◮ Difficulty with deletion and growth:

◮ it is not easy to reuse space occupied formerly by a deleted record;
◮ no space, in general, for a record to grow.

DMS 2010/11 J. Gamper 29/39



Variable-Length Records/4

◮ Slotted page structure
◮ Variation of byte-string representation for organizing records within a block.
◮ A page header contains information about the record organisation:

◮ number of record entries
◮ end of free space in the block
◮ location and size of each record

◮ Records can be moved around in a page to keep them contiguous with no
empty space between them; entry in the header must be updated.

◮ Pointers should not point directly to record; instead, they should point to
the entry for the record in header.

DMS 2010/11 J. Gamper 30/39



Variable-Length Records/5

◮ Fixed-length representation with reserved space
◮ Use fixed-length records of a known maximum length
◮ Unused space in shorter records is filled with a null or end-of-record symbol.

0 Perryridge A-102 400 A-201 900 A-218 700

1 Round Hill A-305 350 ⊥ ⊥ ⊥ ⊥

2 Mianus A-215 700 ⊥ ⊥ ⊥ ⊥

3 Downtown A-101 500 A-100 600 ⊥ ⊥

4 Redwood A-222 700 ⊥ ⊥ ⊥ ⊥

5 brighton A-217 750 ⊥ ⊥ ⊥ ⊥

DMS 2010/11 J. Gamper 31/39



Variable-Length Records/6
◮ Fixed-length representation with pointer

◮ A variable-length record is represented by a list of fixed-length records that
are chained together via pointers.

◮ Can be used even if the maximum record length is not known.

◮ The main disadvantage of the pointer structure is that space is wasted in
all records except the first in a chain.

DMS 2010/11 J. Gamper 32/39



Variable-Length Records/7

◮ Alternative solution (for fixed-length representation with pointer), which
uses two different kinds of blocks in a file

◮ Anchor block: Contains the first record of each chains.
◮ Overflow block: Contains records other than those that are the first records

of chains.

DMS 2010/11 J. Gamper 33/39



Organization of Records in Files

◮ Different ways to logically organize records in a file:
◮ Heap file organisation: A record can be placed anywhere in the file where

there is space; there is no ordering in the file.
◮ Sequential file organization: Store records in sequential order, based on

the value of the search key of each record.
◮ Hashing file organization: A hash function is computed on some attribute

of each record; the result specifies in which block of the file the record is
placed.

◮ Clustering file organization: Records of several different relations can be
stored in the same file

◮ (Generally, each relation is stored in a separate file)

DMS 2010/11 J. Gamper 34/39



Sequential File Organization/1

◮ Sequential file (organization): The records in the file are ordered by a
search-key (one or more attributes)

◮ Records are chained together by pointers
◮ Suitable for applications that require sequential processing of the entire file
◮ To be efficient, records should also be stored physically in search-key order

(or close to it)
◮ Example: Relation account(account-number,branch-name,balance)

DMS 2010/11 J. Gamper 35/39



Sequential File Organization/

◮ It is difficult to maintain the physical order as records are inserted and
deleted, since it is costly to move many records as the result of a single
operation.

◮ Instead, the following strategy is applied:
◮ Deletion: Use pointer chains to collect

free records (free list)
◮ Insertion:

◮ Locate the position where the record is
to be inserted

◮ If there is free space insert there
◮ If there is no free space, insert the

record in an overflow block

◮ Need to reorganize the file from time to
time to restore (physical) sequential order

DMS 2010/11 J. Gamper 36/39



Clustering File Organization

◮ Clustering file (organization): Stores several relations in one file (instead
of each relation in a separate file)

◮ Motivation: store related records on the same block to minimize I/O, e.g.,
for joins

◮ Example: Clustering file of the two relations customer(name, street, city)
and depositor(name, account-num)

Hayes Main Brooklyn

Hayes A-102

Hayes A-220

Hayes A-503

Turner Putnam Stamford

Turner A-305

◮ Good for queries involving a join of depositor and customer , and for queries
involving one single customer and his account

◮ Bad for queries involving only customer
◮ Results in variable size records

DMS 2010/11 J. Gamper 37/39



Data Dictionary Storage/1

◮ Data dictionary (system catalog): stores metadata
◮ Information about relations

◮ names of relations
◮ names and types of attributes of each relation
◮ names and definitions of views
◮ integrity constraints

◮ User and accounting information, including passwords
◮ Statistical and descriptive data

◮ number of tuples in each relation
◮ Physical file organization information

◮ How relation is stored (sequential/hash/)
◮ Physical location of relation
◮ Operating system file name or disk addresses of blocks containing records of

the relation

◮ Information about indexes

DMS 2010/11 J. Gamper 38/39



Data Dictionary Storage/2

◮ Catalog structure: Can use either
◮ specialized data structures designed for efficient access;
◮ or a set of relations, with existing system features used to ensure efficient

access (usually the preferred method)

◮ Schema for a possible catalog representation
◮ relation-metadata(relation-name, number-of-attributes, storage-organization,

location)
◮ attribute-metadata(attribute-name, relation-name, domain-type, position,

length)
◮ user-metadata(user-name, encrypted-password,group)
◮ index-metadata(index-name,relation-name, index-type,index-attributes)
◮ view-metadata(view-name, definition)

DMS 2010/11 J. Gamper 39/39


