
Database Management Systems

Written Examination

09.07.2009

First name Last name

Student number Signature

Instructions for Students

• Write your name, student number, and signature on the exam sheet.

• Write your name and student number on every solution sheet you hand in.

• This is a closed book exam: the only resources allowed are blank paper, pens,
and your head. Use a pen, not a pencil.

• Write neatly and clearly. The clarity of your explanations affects your grade.

• You have 120 minutes for the exam.

Reserved for the Teacher

Exercise Max. points Points

1 20
2 8
3 20
4 20
5 12
6 8
7 12

Total 100

1

Exercise 1 (20 pt) Answer the following questions:

a. Mention two different techniques to optimize disk-block access?

b. What are two index structures that can efficiently handle multiple-key queries?

c. What are the two properties of an ideal hash function?

d. Assuming M memory blocks, what is the best way to use these blocks in the
block nested loop join?

e. The non-leave nodes of a B+-tree form a dense index on the leave nodes. Is
that correct?

f. What are the 3 steps of query processing?

g. When is a schedule cascadeless?

h. What is stored in the lock table?

i. Does the two-phase-locking protocol ensure freedom from deadlocks?

j. For log-based recovery with immediate DB modifications: What actions are
performed after a crash?

Exercise 2 (8 pt) The following table shows a file organization that uses variable-
length records with the pointer method (“↑ ri” denotes a pointer to record ri, and
⊥ denotes the end of a chain).

r0 Jan P1 400 ↑ r2

r1 Joe P3 350
r2 P2 500 ⊥
r3 Ann P1 700 ↑ r4

r4 P4 900 ⊥

a. Show the file after the execution of the following steps:

• Insert(Jan, P7, 800)
• Insert(Ann, P2, 250)
• Delete(Jan, P1, 400)

b. Transform the result of a) into a pointer representation that uses an anchor
block and an overflow block.

c. What is the main disadvantage of the method in a) compared to the method
in b)?

2

Exercise 3 (20 pt) Consider the following relation, which stores information about
project assignments:

Emp Proj Salary Period
r0 Joe A 6 [1,6]
r1 Joe B 14 [1,12]
r2 Ron B 30 [4,24]
r3 Ann A 15 [7,18]
r4 Jim A 4 [7,12]
r5 Ann D 3 [10,12]
r6 Lea F 13 [12,24]
r7 Ann F 13 [13,24]
r8 Jim C 8 [13,18]
r9 Max B 7 [18,24]

Show the following index structures and file organisations (assume that the tuples
are inserted in the order r0, r1, . . .):

a. A primary B+-tree index with n = 3 on Proj together with the data file. Show
the structure after inserting r0, . . . , r4 and after inserting all tuples.

b. A secondary index on Emp together with the data file.

c. A static hash file organisation on Salary using hash function h(n) = n mod 4.
Each bucket can hold at most 2 tuples.

Exercise 4 (20 pt) Consider a relation emp with schema (ID ,Name,Dept ,Salary)
and |emp| = 1, 000, 000. The size of the attribute values is: ID = 4 bytes, Name = 50
bytes, Dept = 30 bytes, Salary = 6 bytes. The ID values are equally distributed
between 1 and 10, 000, 000, and there are no two tuples with identical ID . A pointer
occupies 6 bytes, and we assume a block size of 2, 000 bytes. Further, we assume
seek time = 0.016 sec, latency = 0.016 sec, and transfer time = 0.001 sec.

a. Determine the number of blocks needed to store the relation emp if 10% of
each data block are reserved for future insertions.

b. Assume a B+-tree index on the attribute ID . Determine the number of blocks
(= number of nodes) used for the B+-tree if index blocks are filled up to 75%.

c. Consider the following two queries:

• Q1: σID=1Mio(emp)
• Q2: σID>7.5Mio(emp)

Determine the number of block IOs (index blocks and data blocks) and the
execution time if the B+-tree is a primary index.

d. The same as c), but assume that the B+-tree is a secondary index.

Exercise 5 (12 pt) Let relations r(A, B, C) and s(C, D, E) have the following prop-
erties: r has 20,000 tuples, s has 45,000 tuples, 25 tuples of r fit on one block, and
30 tuples of s fit on one block.

Compute the costs of the following evaluation plans for r 1 s:
• Plan p1: Nested-loop join with r as outer relation
• Plan p2: Block nested-loop join with r as outer relation
• Plan p3: Merge join if r and s are not initially sorted

3

Exercise 6 (8 pt) Proof that the following expressions hold or do not hold:

a. σθ(E1 − E2) = σθ(E1) − E2

b. σθ(E1 ∪ E2) = σθ(E1) ∪ E2

Exercise 7 (12 pt) Given is the following schedule that involves transactions T1

and T2:

T1 T2

1 read(A)
2 write(A)
3 read(A)
4 read(B)
5 read(B)
6 write(B)

Answer the following questions and explain your answers:

a. Is the schedule conflict serializable?

b. Is the schedule view serializable?

c. Is the schedule recoverable if both transactions commit immediately after the
last operation?

d. Is the schedule possible under the timestamp protocoll?

4

Solution 1

a. Two of the following techniques: disk-arm-scheduling, appropriate file organi-
zation, use of write buffers, use of log disks.

b. Bitmap index and grid file index

c. Uniform and random

d. M−2 blocks for the outer relation, 1 block for the inner relation, 1 block for
the output

e. No

f. (i) Parsing and transation, (ii) optimization, (iii) evaluation

g. If for each pair of transactions Ti and Tj such that Tj reads data previously
written by Ti, the commit of Ti appears before the read of Tj .

h. The lock table stores granted locks and pending requests for locks.

i. No

j. Transaction T needs to be undone if the log contains a 〈T, start〉 record but
not a 〈T, commit〉 record; T needs to be redone if the log contains both a
〈T, start〉 record and a 〈T, commit〉 record.

Solution 2

a. File after the 3 update operations:

r0

r1 Joe P3 350
r2 Jan P2 500 ↑ r5

r3 Ann P1 700 ↑ r4

r4 P4 900 ↑ r6

r5 P7 800 ⊥
r6 P2 250 ⊥

b. Pointer representation with anchor block and overflow block:

Anchor block:
r0 Joe P3 350
r1 Jan P2 500 ↑ s0

r2 Ann P1 700 ↑ s1

Overflow block:
s0 P7 800 ⊥
s1 P4 900 ↑ s2

s2 P2 250 ⊥

Note: This method (immediately) follows the pointer chains during the trans-
formation, thus (P7, 800,⊥) is the first overflow record. If the data records
are scanned sequentially, the order of tuples in the overflow block is different.

c. Space is wasted (i.e., the Name attribute is empty) in all records except the
first one in a chain.

5

Solution 3

a. Primary B+-tree index on Proj

• after reading r0, . . . , r4:

B+-tree index

A B

Data file

Emp Proj Salary Period
Joe A 6 [1,6]
Ann A 15 [7,18]
Jim A 4 [7,12]
Joe B 14 [1,12]
Ron B 30 [4,24]

• after reading all tuples

B+-tree index

C D

A B C D F

Data file

Emp Proj Salary Period
Joe A 6 [1,6]
Ann A 15 [7,18]
Jim A 4 [7,12]
Joe B 14 [1,12]
Ron B 30 [4,24]
Max B 7 [18,24]
Jim C 8 [13,18]
Ann D 3 [10,12]
Lea F 13 [12,24]
Ann F 13 [13,24]

NOTE: For the data file we assume that tuples with identical Proj values are
stored in the same order as in the original file, i.e., a new tuple is always stored
at the end of a sequence of tuples with the same value.

b. Secondary index on Emp (with duplicate index entries)

Index file

Ann

Ann

Ann

Jim

Jim

Joe

Joe

Lea

Max

Ron

Data file

Emp Proj Salary Period
Joe A 6 [1,6]
Joe B 14 [1,12]
Ron B 30 [4,24]
Ann A 15 [7,18]
Jim A 4 [7,12]
Ann D 3 [10,12]
Lea F 13 [12,24]
Ann F 13 [13,24]
Jim C 8 [13,18]
Max B 7 [18,24]

c. Hash file organization

h(4) = 0; h(8) = 0; h(13) = 1; h(6) = 2; h(14) = 2; h(30) = 2; h(3) = 3;
h(7) = 3; h(15) = 3;

Bucket 0:
(Jim, A, 4, [7,12])
(Jim, C, 8, [13,18])

Overflow buckets

Bucket 1:
(Lea, F, 13, [12,24])
(Ann, F, 13, [13,24])

Bucket 2:
(Joe, A, 6, [1,6])
(Joe, B, 14, [1,12])

−→

(Ron, B, 30, [4,24])

Bucket 3:
(Ann, A, 15, [7,18])
(Ann, D, 3, [10,12])

−→

(Max, B, 7, [18,24])

6

Solution 4

a. Data blocks:
0.9 ∗ 2, 000 = 1, 800 bytes used in every data block
⌊1, 800/(4 + 50 + 30 + 6)⌋ = 20 tuples/block
⌈1, 000, 000/20⌉ = 50, 000 data blocks needed for emp

b. Index blocks:
0.75 ∗ 2000 = 1, 500 bytes used in every index block
⌊1, 500/(4 + 6)⌋ = 150 index entries/block
- level 3 (leaf nodes): ⌈1, 000, 000/150⌉ = 6, 667 blocks
- level 2: ⌈6, 667/150⌉ = 45 blocks
- level 1: ⌈45/150⌉ = 1 block
⇒ 6, 713 index blocks are needed

c. Primary index:
Q1:
3 index blocks (one at each level) + 1 data block
⇒ 3 + 1 = 4 blocks are transfered in total

Execution time = 4 ∗ 0.033 = 0.132 sec

Q2:
3 index blocks (one at each level) to locate the first tuple
⌈250, 000/20⌉ = 12, 500 data blocks (on avg. 250, 000 tuples match, and all
matching tuples are in contiguous blocks)
⇒ 3 + 12, 500 = 12, 503 blocks are transfered in total

Execution time = 12, 503 ∗ 0.033 = 412.6 sec

d. Secondary index:
Q1: the same as for primary index

Q2:
On avg. 250, 000 data tuples match
3 index blocks (one at each level) to locate the first tuple
⌈250, 000/150⌉ = 1667 index (leaf) nodes/blocks to locate the other tuples
250, 000 data blocks to retrieve (in the worst case each matching tuple might
be in a different block)
⇒ 3 + 1, 667 + 250, 000 = 251, 670 blocks are transfered in total
(a full scan of the data relation without using the index would be more efficient)

Execution time = 251, 670 ∗ 0.033 = 8, 305.1 sec

7

Solution 5

Tuples of r: nr = 20, 000
Tuples of s: ns = 45, 000
Blocks required for r: br = ⌈20, 000/25⌉ = 800 blocks
Blocks required for s: bs = ⌈45, 000/30⌉ = 1500 blocks

a. cost(p1) = br + nr ∗ bs = 800 + 20, 000 ∗ 1, 500 = 30, 000, 800

b. cost(p2) = br + br ∗ bs = 800 + 800 ∗ 1, 500 = 1, 200, 800

c. Composed of cost of joining + cost of sorting (using external sort-merge)
cost(p3) = br + bs + cost(sorting)

cost(sorting r) = br(2⌈logM−1(br/M)⌉ + 1), where M is the number of
buffer blocks. We have to add to this cost the cost of the output, i.e., br block
transfers.

cost(sorting r) = 800 ∗ (2⌈logM−1(800/M)⌉ + 2)
cost(sorting s) = 1, 500 ∗ (2⌈logM−1(1, 500/M)⌉ + 2)

Total cost: cost(p3) = 800 + 1, 500 + 800 ∗ (2⌈logM−1(800/M)⌉ + 2) +
1, 500 ∗ (2⌈logM−1(1, 500/M)⌉ + 2)

8

Solution 6

a. The equivalence holds. Proof by showing containment in both directions:
⇒: Assume ∃t ∈ σθ(E1 − E2); then t satisfies θ and t ∈ E1 and t 6∈ E2;
therefore t ∈ σθ(E1); since t 6∈ E2, we have also t ∈ σθ(E1) − E2.
⇐: Assume t ∈ σθ(E1)−E2; then t satisfies θ and t ∈ E1 and t 6∈ E2; therefore
t ∈ E1 − E2 and, since t satisfies θ, we have also t ∈ σθ(E1 − E2).

b. The equivalence does not hold. Proof by counter-example:
Assume schema (A, B) for E1 and E2, instances E1 = {(a, 1)} and E2 =
{(b, 1)}, and let θ be the condition A =′ a′.
Then on the right-hand side we get E1 ∪ E2 = {(a, 1), (b, 1)} and σA=′a′(E1 ∪
E2) = {(a, 1)}.
On the left-hand side we get σA=′a′(E1) ∪ E2 = {(a, 1)} ∪ {(b, 1)} =
{(a, 1), (b, 1)}, which is different from the result of the left-hand side.

Solution 7

a. No. For both possible serial schedules, 〈T1, T2〉 and 〈T2, T1〉, we get either a
conflict with write(A) − read(A) or with write(B) − read(B).

b. No.
In the serial schedule 〈T1, T2〉, the following rule is violated for data item B:
For each data item Q, if transaction Ti reads the inital value of Q in schedule
S, then Ti must in scheule S′ also read the initial value of Q.
In the serial schedule 〈T2, T1〉, the following rule is violated for data item A:
For each data item Q, if transaction Ti reads data item Q in schedule S and
the value was produced by Tj , then Ti must in scheule S′ also read the value
of Q that was produced by Tj .

c. No. T1 might fail after T2 already committed (and T2 used A which was
produced by T1).

d. No. Assume ts(T1) = 1 and ts(T2) = 2. Then T2 sets the read timestamp of
B to R − ts(B) = 2. When T1 wants to write B, we have ts(T1) < R − ts(B),
thus the write operation is rejected and T1 is rolled back.
If ts(T2) = 1 and ts(T1) = 2 the same situation appears with the data item A.

9

