
Database Management Systems

Written Examination

02.02.2009

First name Last name

Student number Signature

Instructions for Students

• Write your name, student number, and signature on the exam sheet.

• Write your name and student number on every solution sheet you hand in.

• This is a closed book exam: the only resources allowed are blank paper, pens,
and your head. Use a pen, not a pencil.

• Write neatly and clearly. The clarity of your explanations affects your grade.

• You have 120 minutes for the exam.

Reserved for the Teacher

Exercise Max. points Points

1 20
2 10
3 20
4 20
5 10
6 10
7 10

Total 100

1

Exercise 1 (20 pt) Answer the following questions:

a. What is a clustering file organisation?

b. When and why is a multi-level index recommended?

c. When is a sparse secondary index useful?

d. What is the main difference between a B+-tree file organisation and a B+-tree
index?

e. What are the 3 steps of query processing?

f. How can the materialized view v = r 1 s be updated incrementally when ir
tuples are inserted into r?

g. What are the 5 states of a transaction?

h. What is a cascading rollback?

i. Which ACID properties are ensured by the recovery system?

j. For log-based recovery with deferred DB modifications: What actions are per-
formed if a transaction is rolled back?

Exercise 2 (10 pt) Consider the following relation:

Branch Customer Account

Downtown Smith 237
Downtown Jones 222
Mianus Smith 250
Downtown Turner 300
Mianus Jackson 200
Mianus Hayes 382
Downtown Williams 180
Brighton Jackson 290

Suppose that a branch with all its customer and accounts shall be stored in a
variable-length record. Show the file organisation for the following methods:

a. Fixed-length representation with reserved space

b. Fixed-length representation with pointer

c. Slotted page structure

2

Exercise 3 (20 pt) Consider the following relation r:

Course StudID Grade
r0 DMS 2100 18
r1 ITP 2157 18
r2 ITP 2230 30
r3 DMS 2177 24
r4 OS 2340 30
r5 ITP 2200 23
r6 DMS 2157 28
r7 DB 2300 30
r8 DMS 2263 25
r9 DB 2299 28

Show the following index structures and file organisations:

a. An index-sequential file organisation with a primary sparse index on StudID .
For a search-key k, an index entry is created if k mod 100 = 0.

b. On top of the index-sequential structure in a), a secondary B+-tree index on
Grade. Assume n = 3 for the B+-tree. The tuples are read sequentially as
stored in the index-sequential file in a).

c. A hash file organisation using extendable hashing on Grade and the hash
function h(n) = n mod 8. Each bucket holds at most 2 tuples. Show the
structure after inserting r0 − r4 and after inserting all tuples.

d. A bitmap index on Course.

Exercise 4 (20 pt) Let r(A, B) and s(A, C) be two relations with the following
characteristics: |r| = 45.000, |s| = 20.000, A is primary key in both relations and
equally distributed between 1 and 1.000.000, and s has a primary B+-tree index on
attribute A with 100 search-key/pointer pairs per node. A single block can contain
25 tuples of r, 30 tuples of s, or 1 node of the index.

a. Determine the number of blocks needed for r, s, and the index, respectively.

b. Determine the access strategy and determine the number of block IOs for the
following selection queries:

• σA=100.000(s)

• σA<100.000(s)

• σA>100.000(s)

c. Determine the number of block IOs for the following evaluation plans for r 1 s
when 3 main memory buffer blocks are available:

• Plan p1: Block nested loop join

• Indexed nested loop join using the index in a)

• Plan p3: Hash join

d. For the hash join in plan p3 above a partition of s need to fit entirely in main
memory. Assume a main memory buffer size of 12 blocks. How should the
buffer blocks be used and what would be a useful hash function such that the
number of s-partitions is minimal, i.e., the partitions are maximal. (Assume
that the A-values are perfectly distributed)

3

Exercise 5 (10 pt) Assume two relations r(A, B) and s(B, C). Transform the
following relational algebra expression into more efficient ones and motivate your
choice:

a. σ(A=1∨A=3)∧B<C(r 1 s)

b. πB(σC>100(r 1 s))

Exercise 6 (10 pt) Given is the following schedule over transactions T1, T2, T3:

T1 T2 T3

read(Z)
read(Y)
write(Y)

read(Y)
read(Z)

read(X)
write(X)

write(Y)
write(Z)

read(X)
read(Y)
write(Y)

write(X)

a. Draw the precedence graph and show that the schedule is not conflict serial-
izable.

b. Design a concurrent schedule of T1, T2, and T3 that is conflict serializable.
Specify also the equivalent serial schedule.

c. Assuming the timestamp order TS (T1) < TS (T2) < TS (T3): Is the schedule
in a) possible under the timestamp ordering protocol? Explain your answer.

Exercise 7 (10 pt) Consider the following schedule:

T1 T2

read(A)
write(B)

read(B)

a. Is this schedule possible under the two-phase locking protocol? If yes, add lock
and unlock instructions.

b. Assume the following order on the data items: A → B. Is the schedule possible
under the tree protocol? If yes, add lock and unlock instructions.

c. Suppose that none of the two transactions committed yet (e.g., additional
operations might follow). Is the schedule cascadeless? Explain your answer.
If no, where should a commit be placed in order to make it cascadeless?

4

Solution 1

a. Records of several different relations are stored in the same file.

b. If the primary index does not fit entierely in main memory.

c. Never. Secondary indexes have always to be dense in order to be useful.

d. In the B+-tree file organisation the leave nodes store the data records; in the
B+-tree index the leave nodes store pointers to the data records.

e. (i) Parsing and translation, (ii) optimization, (iii) evaluation

f. vnew = vold ∪ (ir 1 s)

g. Active, partially committed, committed, failed, aborted

h. A single transaction leads to a series of transaction rollbacks.

i. Atomicity and durability

j. No actions need to be done.

Solution 2

a. Fixed-length representation with reserved space:

0 Downtown Smith 237 Jones 222 Turner 300 Williams 180
1 Mianus Smith 250 Jackson 200 Hayes 382 ⊥ ⊥
2 Brighton Jackson 290 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

b. Fixed-length representation with pointer:

0 Downtown Smith 237
1 Jones 222
4 Mianus Smith 250
2 Turner 300
4 Jackson 200
5 Hayes 382
3 Williams 180
6 Brighton jackson 290

c. Slotted page structure:

Block header

Jones, 222, Turner, 300, Williams, 180
Downtown, Smith, 237,

Jackson, 200, Hayes, 382
Mianus, Smith, 237,

Jackson, 290
Brighton,Free space

Records

entries

Pointer to end of free space Pointer to data records

5

Solution 3

a. Index-sequential file organisation with primary index (see point b.)

b. Secondary B+-tree index

18 23 24 25 28 30

2824

18

28

18

24

23

25

28

30

28

30

Data file

Secondary index on Grade

2100

2200

2300

2100DMS

2157DMS

ITP 2157

2177DMS

2200ITP

ITP 2230

2263DMS

DB 2299

2300DB

OS 2340

on StudID
Primary sparse index

c. Extendable hashing

• after inserting r0, . . . , r4:

2
2

2

1

00

01

10

11

Bucket address table

Prefix

Buckets

(ITP,2230,30), (OS,2340,30)

(DMS,2100,18), (ITP,2157,18)

(DMS,2177,24)

• after inserting all tuples:

2

(DMS,2177,24), (DMS,2263,25)

2

(DMS,2100,18), (ITP,2157,18)

3

001

010

011

Bucket address table

000

111

110

101

100

3

(ITP,2230,30), (OS,2340,30)

2

(DMS,2157,28), (DB,2299,28)

3

(ITP,2200,23)

(DB,2300,30)

Buckets Overflow buckets

Prefix

d. Bitmap index for Course and Grade:

DMS: [1 0 0 1 0 0 1 0 1 0]

ITP: [0 1 1 0 0 1 0 0 0 0]

OS: [0 0 0 0 1 0 0 0 0 0]

DB: [0 0 0 0 0 0 0 1 0 1]

6

Solution 4

a. Data blocks for r: br = ⌈45.000/25⌉ = 1.800 blocks
Data blocks for s: bs = ⌈20.000/30⌉ = 667 blocks
Index on s:
– level 3: ⌈20.000/100⌉ = 200 nodes
– level 2: ⌈200/100⌉ = 2 nodes
– level 1: ⌈2/100⌉ = 1 node
Total for index: 203 blocks

b. σA=100.000(s):
– Traverse the B+-tree to locate the matching tuple
– 3 index block IOs + 1 data block IO = 4 block IOs
σA<100.000(s):
– Scan the data file from the beginning; the index is not needed.
– Avg. distance between A-values: 1.000.000/20.000 = 50
– Tuples that match the selection predicate: 100.000/50 = 2.000
– Thus, ⌈2.000/30⌉ = 67 data block IOs
σA>100.000(s):
– Traverse the B+-tree to locate the first matching tuple: 3 index blocks
– Scan the data file sequentially from that tuple
– Avg. distance between A-values: 1.000.000/20.000 = 50
– Tuples that match the selection predicate: 900.000/50 = 18.000
– Thus, ⌈18.000/30⌉ = 600 data block IOs
– Total block IOs: 3 + 600 = 603

c. Plan p1: Block nested loop join (with r as outer relation):
– C = br ∗ bs + br = 1.800 ∗ 667 + 1.800 = 1.202.400
Plan p2: Indexed nested loop join:
– Use the index to access matching tuples in s
– Cost c to access a matching tuple: c = 3 + 1 = 4 block IOs
– Cost for p2: C = nr ∗ c + br = 45.000 ∗ 4 + 1.800 = 181.800
Plan p3: Hash join (partially filled blocks are ignored):
– C = 3 ∗ (br + bs) = 3 ∗ (1.800 + 667) = 7.401

d. – Use 1 block for the result, 1 block for r-partitions, 10 blocks for s-partitions
– Thus, an s-partition can hold at most 30 ∗ 10 = 300 tuples
– Avg. distance between A-values in s: ⌈1.000.000/20.000⌉ = 50
– The range of A-values that fit in a partition is 300 ∗ 50 = 15.000
– A hash function that assigns 1.500 tuples to a partition: h = A div 15.000

7

Solution 5

a. σ(A=1∨A=3)∧B<C(r 1 s):
– Push condition A = 1 ∨ A = 3 down to r
– Push condition B < C down to s
– Both transformations reduce the arguments of the join
– Thus, we get σA=1∨A=3(r) 1 σB<C(s)
– An additional optimization might be to split the OR condition and replace
it by a union: (σA=1(r) ∪ σA=3(r)) 1 σB<C(s)

b. πB(σC>100(r 1 s)):
– Push down σC>100 to s followed by a projection to B
– Project r to attribute B
– Both operations reduce the argument relations of the join: the selection
reduces the number of tuples, the projection reduces the size (in terms of
blocks)
– Thus, we get πB(r) 1 πB(σC>100(s))
– Note that the join is needed, since there might be B-values in s that are not
in r

Solution 6

a. Precedence graph:

There is a cycle in the precedence graph: T1
X
→ T2 and T2

Y
→ T1. Hence, the

schedule is not conflict serializable.

b. The following schedule is conflict serializable to the serial schedule 〈T3, T1, T2〉

T1 T2 T3

read(Y)
read(Z)

read(X)
write(X)

write(Y)
write(Z)

read(Z)
read(Y)
write(Y)

read(Y)
write(Y)
read(X)
write(X)

c. No. There are conflicting read and write operations on Y in T1 and T2, which
are not executed in timestamp order: T2 writes Y and then T1 reads Y .

8

Solution 7

a. Yes, it is possible under the two-phase locking protocol.

T1 T2

1 lock-S(A)
2 read(A)
3 lock-X(B)
4 write(B)
5 unlock(B)
6 lock-S(B)
7 read(B)
8 unlock(A)
9 unlock(B)

b. Yes, it is possible under the tree protocol.

T1 T2

1 lock-X(A)
2 read(A)
3 lock-X(B)
4 write(B)
5 unlock(B)
6 lock-X(B)
7 read(B)
8 unlock(A)
9 unlock(B)

Note, that the tree protocol allows only X-locks.

c. No, the schedule is not cascadeless. If T2 aborts, T1 must be rolled back, since
it uses a value of B that has been previously written by T2.

In order to make the schedule cascadeless, a commit must be placed immedi-
ately after write(B) in T2.

9

