
Database Management Systems

Written Examination

25.09.2008

First name Last name

Student number Signature

Instructions for Students

• Write your name, student number, and signature on the exam sheet.

• Write your name and student number on every solution sheet you hand in.

• This is a closed book exam: the only resources allowed are blank paper, pens,
and your head. Use a pen, not a pencil.

• Write neatly and clearly. The clarity of your explanations affects your grade.

• You have 120 minutes for the exam.

Reserved for the Teacher

Exercise Max. points Points

1 20
2 10
3 20
4 20
5 10
6 10
7 10

Total 100

1



Exercise 1 (20 pt) Answer the following questions:

a. What are the three performance measures of hard disks?

b. What is the main problem with sequential file organisation?

c. How must the data be stored that binary search can be applied to evaluate a
selection query?

d. What index is preferrable for range queries: primary index or secondary index?
Explain your answer.

e. What is specified in a query plan (evaluation plan)?

f. Describe two alternative ways to evaluate the complex join r 1θ1∨θ2∨···∨θn
s

g. Which strategy for the evaluation of complex expressions is more efficient:
materialization or pipelining?

h. When is a schedule cascadeless?

i. What is stored in the lock table?

j. Consider log-based recovery with immediate DB modifications and the follow-
ing log file: 〈T0, start〉, 〈T0, A, 1000, 950〉, 〈T0, B, 2000, 1950〉. What actions
are performed if the system crashes in this situation?

Exercise 2 (10 pt) Given is the following table with project assignments:

Employee Project Hours

Jan P1 800
Ann P1 250
Jan P2 400
Jan P3 500
Jan P4 900
Joe P3 350

a. Show two different ways of a file organization using the reserved space method
(variable-length records).

b. Assume the following memory requirements for the attribute values: Name =
20 Bytes, Project = 10 Bytes, Hours = 4 Bytes. Calculate the disk space used
by the two different solutions in a).

c. How much disk space is wasted (unused) by the two solutions in a)?

2



Exercise 3 (20 pt) Consider the following relation r:

Name Course Grade

r0 Tom ITP 30
r1 Tom DMS 21
r2 Aron CSA 18
r3 Ann OS 18
r4 Ann DMS 25
r5 Nick ITP 27
r6 Nick DSA 23
r7 Nick IDB 26
r8 Sue ITP 28
r9 Sue CSA 19

Show the following index structures and file organisations:

a. A primary dense B+-tree index on Course. Assume n = 3 for the B+-tree. The
tuples are inserted in the order r0, r1, r2, . . . , r9. Show the tree after inserting
r0 − r4 and after inserting all tuples.

b. An extensible hash table on Grade with the hash function h(n) = n mod 8.
Each bucket holds at most 2 tuples. The tuples are inserted in the order
r0, r1, r2, . . . , r9. Show the structure after inserting r0 − r4 and after inserting
all tuples.

c. Assume that we map the grades to an alternative system with grades A–E as
follows: A = [30], B = [29, 28, 27], C = [26, 25, 24, 23, 22], D = [21, 20, 19],
E = [18]. Create a bitmap index that efficiently supports queries that retrieve
all tuples with a grade that corresponds to A, B, C, D, or E.

d. Assume that you have a B+-tree index on Course and a (separate) B+-tree
index on Grade. Then consider the following query:

SELECT * FROM r WHERE Course = ’ITP’ AND Grade = 30

Describe 3 different evaluation strategies for this query that take advantage of
the two indexes (independent of the specific tuples in the above table).

Exercise 4 (20 pt) Assume a relation prod(pid, category, price, ...) with
600.000 tuples, where each tuple is 100 Bytes. The product ID pid is a key and is
equally distributed between 1 and 3.000.000. The block size is 2.000 Bytes.

a. Consider a B+-tree index on the product ID pid, where the pid requires 4
Bytes and a pointer requires 6 Bytes; a tree node occupies an entire block.
Determine the minimal and maximal number of blocks used for the tree.

b. Consider the B+-tree from a.) with the minimal number of blocks and assume
that it is a primary index. Describe the evaluation of the following queries and
determine the number of IOs (data blocks + index blocks):

Q1:SELECT * FROM prod WHERE pid BETWEEN 10000 AND 20000

Q2:SELECT CNT(*) FROM prod WHERE pid BETWEEN 10000 AND 20000

c. Repeat c.) but assume the B+-tree to be a secondary index.

d. Consider to apply external sort-merge to sort the relation prod. The number
of blocks that fit in the buffer is 40. Briefly describe the steps of the algo-
rithm, indicate the number of sorted runs at each step, and determine the
total number of block transfers.

3



Exercise 5 (10 pt) Assume two relations r(A, C) and s(B, D) and the following
relational algebra expression:

σA<10∧B>100∧A+B<200(r × s)

a. Transform this selection statement into a more efficient expression by applying
some equivalence rules. Explain your choice and why the new expression is
more efficient.

b. Assume that you can create one single-attribute index on either relation r or
s to improve the evaluation of the expression obtained in a.). Which index
(type, relation, attribute) would you create? Motivate your choice and briefly
describe the evaluation strategy with this index.

Exercise 6 (10 pt) Given are two schedules S1, S2 over transactions T1, T2, T3:

S1:

T1 T2 T3

read(A)
read(B)

write(A)
read(A)

write(B)
write(A)

read(B)
write(B)

S2:

T1 T2 T3

read(A)
read(B)

write(A)
read(B)

read(A)
write(B)

write(A)
write(B)

a. Show the conflict graphs of S1 and S2.

b. Are S1 and S2 conflict serializable? (explain your answer)

c. Are S1 and S2 view serializable? (explain your answer)

Exercise 7 (10 pt) Consider the following two transactions:
T1: read(A);

read(B);
if A=0 then B := B + 1;
write(B).

T2: read(B);
read(A);
if B=0 then A := A + 1;
write(A).

a. Add lock and unlock instructions to transactions T1 and T2, so that they
observe the two-phase locking protocol.

b. Show a concurrent schedule of T1 and T2 that results in a deadlock? Show also
the evolution of the wait-for graph.

c. For the schedule in b.) what happens under the wait-die deadlock prevention
protocol?

4



Solution 1

a. Access time, data-transfer rate, and mean time to failure.

b. To maintain the physical order as records are inserted and deleted.

c. The data must be stored on contiguous blocks and sorted on the attribute in
the selection condition.

d. Primary index. Use the index to locate the first data item, then scan the data
file. With a secondary index, the index is needed to locate every matching
record.

e. Query plan defines what algorithm is used for each operation, in what order
the operations are exectued, and whether materialized evaluation or piplined
evaluation is used.

f. (1) Use nested loop or block nested loop join and test the entire condition for
each pair of tuples.
(2) Compute the union of the individual joins: r 1θ1

s ∪ · · · ∪ r 1θn
s

g. Pipelining.

h. If for each pair of transactions Ti and Tj such that Tj reads data previously
written by Ti, the commit of Ti appears before the read of Tj .

i. The lock table stores granted locks and pending requests for locks.

j. undo(T0), i.e., A is restored to 1000, and B is restored to 2000.

Solution 2

a. File organization with reserved space method for variable-length records:
– Solution I: One record for each person

0 Jan P1 800 P2 400 P3 500 P4 900
1 Ann P1 250 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
2 Joe P3 350 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

– Solution II: One record for each project

0 P1 Jan 800 Ann 250
1 P2 Jan 400 ⊥ ⊥
2 P3 Jan 500 Joe 350
3 P4 Jan 900 ⊥ ⊥

b. Memory requirements:
– Solution I: 1 record = (20 + 4 x 14) = 76 Bytes, total = 3 x 76 = 228 Bytes
– Solution II: 1 record = (10 + 2 x 24) = 58 Bytes, total = 4 x 58 = 232 Bytes

c. Unused disk space:
– Solution I: 6 x 14 = 84 Bytes
– Solution I: 2 x 24 = 48 Bytes

5



Solution 3

a. B+-tree index

– after inserting r0 − r4:

CSA DMS ITP OS

ITP

– after inserting all tuples:

CSA DMS ITP OS

DSA ITP

IDBDSA

b. Extensible hash file organization (TODO):

• The hash function gives:
h(18) = 010, h(19) = 011, h(21) = 101, h(23) = 111, h(25) = 001,
h(26) = 010, h(27) = 011, h(28) = 100, h(30) = 110

• Overflow buckets are used, if a bucket is already full.

– after inserting r0 − r4:

(Ann,DMS,25)

(Tom,ITP,30), (Tom,DMS,21)

(Aron,CSA,18), (Ann,OS,18)

2
2

2

1

00

01

10

11

Bucket address table

Prefix

Buckets

– after inserting all tuples:

(Ann,DMS,21), (Sue,ITP,28)

(Nick,ITP,27), (Sue,CSA,19)

(Ann,DMS,25)

(Aron,CSA,18), (Ann,OS,18) (Nick,IDB,26)

(Tom,ITP,30), (Nick,DSA,23)

3

111

110

101

100

011

010

001

000

Prefix

2

2

3

3

Bucket address table Buckets Overflow buckets

2

c. Bitmap index for Grade:

A: [1 0 0 0 0 0 0 0 0 0]

B: [0 0 0 0 0 1 0 0 1 0]

C: [0 0 0 0 1 0 1 1 0 0]

D: [0 1 0 0 0 0 0 0 0 1]

E: [0 0 1 1 0 0 0 0 0 0]

d. The 3 evaluation strategies are:

6



1. Use index on Course to find all tuples with Course = ’ITA’; then test for
Grade = 30.

2. Use index on Grade to find all tuples with Grade = 30; then test for
Course = ’ITA’.

3. Use index on Course to find pointers to all records with a Course = ’ITA’.
Similarly, use index on Grade to find pointers to all records with a Grade

= 30. Take the intersection of the two pointer sets.

Solution 4

a. Minimal number of index blocks when tree nodes are completely filled
⌊2.000/(4 + 6)⌋ = 200 index entries/block
- leaf nodes: ⌈600.000/200⌉ = 3.000 blocks
- level n− 1: ⌈3.000/200⌉ = 15 blocks
- level n− 2: ⌈15/200⌉ = 1 block
⇒ at least 3.016 index blocks are required

Maximal number of index blocks when tree nodes are only half full
⌊1.000/(4 + 6)⌋ = 100 index entries/block
- leaf nodes: ⌈600.000/100⌉ = 6, 000 blocks
- level n− 1: ⌈6.000/100⌉ = 60 blocks
- level n− 2: ⌈60/100⌉ = 1 block
⇒ at most 6.061 index blocks are required

b. Average distance between pid values: 3.000.000/600.000 = 5
⇒ Q1 and Q2 retrieve (20.000− 10.000)/5 = 2.000 tuples on average.

Data tuples/block: ⌈2.000/100⌉ = 20

Q1: Traverse the tree once to get the block of the first matching tuple, then
scan the data blocks for the other tuples.
– Block IOs: 3 index nodes + ⌈2.000/20⌉ = 100 data blocks ⇒ 103 total IOs

Q2: Traverse the tree once to get the leaf node with the first matching search-
key, then scan the leave nodes for the other matching keys. The tuples are not
needed to evaluate this query!
– Block IOs: 3 index nodes + 2.000/200 = 10 index leaf nodes ⇒ 13 IOs

c. Q1: Traverse the tree once to get the leaf node with the first matching search-
key, then follow the leaf nodes for the other matching search-keys. For each
matching search-key, follow the data pointer and retrieve the tuple.
– Block IOs: 3+10 = 13 index nodes as in Q2 above; 2.000 data blocks (worst
case, each tuple on separate block); ⇒ 2.013 IOs in total

Q2: The same as in b.)

d. External sort-merge:
We have 20 data tuples/block;
Size of relation: ⌈600.000/20⌉ = 30.000 blocks
40 blocks fit into the buffer

Step 1: Create initial sorted runs by filling the buffer with 40 blocks of tuples
and performing in-memory sort; each sorted run is of size 40 blocks (= 400
tuples).
– Number of sorted runs: ⌈30.000/40⌉ = 750

7



Step 2 (Merge pass 1): Merge runs by merging contiguous groups of 39 sorted
runs, thus reducing the number of runs by a factor of 39.
– Number of sorted runs: ⌈750/39⌉ = 20

Step 3 (Merge pass 2): Perform merge as in step 2.
– Number of sorted runs: ⌈20/39⌉ = 1

Total number of block transfers:
– In step 1 and step 2 all blocks are read from and written back to disk
⇒ 2 ∗ (2 ∗ 30.000) = 120.000 IOs
– In step 3 we do not count the final output ⇒ 1 ∗ 30.000 = 30.000 IOs
⇒ 150.000 IOs in total

Solution 5

a. First, since condition A < 10 refers only to relation r, it can be pushed down to
r. Similar, B > 100 can be pushed down to s, and we get σA+B<200(σA<10(r)×
σB>100(s)), which produces a smaller Cartesian product.

Second, the condition A + B < 200 can be pushed down to transform the
Cartesian product into a join. The final expression is then: σA<10(r) 1A+B<200

σB>100(s)

b. Create an ordered index on attribute B of relation s. The index can then be
used to locate the first tuple with B > 100 and then continue to scan the
relation. For the condition on relation r is not useful, since the relation is
anyway scanned from the beginning.

Solution 6

a. Conflict graphs

S1: S2:

b. S1 is conflict serializable, since the conflict graph contains no cycles. It is
equivalent to the serial schedule 〈T1, T2, T3〉.
S2 is not conflict serializable, since there is a cycle in the conflict graph.

c. Since S1 is conflict serializable, it is also view serializable.
S2 is not view serializable, since both T1 and T2 read the initial value of B and
modify B. Hence, it is impossible to create a serial schedule, where both T1

and T2 read the initial value of B.

8



Solution 7

a. Lock and unlock instructions:

T1: lock-S(A);
read(A);
lock-X(B);
read(B);
if A=0 then B := B + 1;
write(B).
unlock(A);
unlock(B);

T2: lock-S(B);
read(B);
lock-X(A);
read(A);
if B=0 then A := A + 1;
write(A).
unlock(B);
unlock(A);

b. The following schedule results in a deadlock at step 6:

T1 T2 Wait-for graph

1 lock-S(A);
2 lock-S(B);
3 read(B);
4 read(A)
5 lock-X(B) T1 −→ T2 (T1 waits for T2)

6 lock-X(B); T1
−→←− T2 (T1 waits for T2 and vice versa)

c. Wait-die deadlock prevention protocol: We assume that T1 is the older trans-
action and T2 is the younger transaction. Then at step 6, T2 (the younger
transaction) will not wait for T1 (the older transaction) to release the lock.
Instead, T2 is rolled back, and the lock on B is released. T1 can now continue.

9


