
Database Management Systems

Written Examination

01.07.2008

First name Last name

Student number Signature

Instructions for Students

• Write your name, student number, and signature on the exam sheet.

• Write your name and student number on every solution sheet you hand in.

• This is a closed book exam: the only resources allowed are blank paper, pens,
and your head. Use a pen, not a pencil.

• Write neatly and clearly. The clarity of your explanations affects your grade.

• You have 120 minutes for the exam.

Reserved for the Teacher

Exercise Max. points Points

1 20
2 10
3 20
4 20
5 10
6 12
7 8

Total 100

1



Exercise 1 (20 pt) Answer the following questions:

a. Describe briefly two different buffer replacement strategies.

b. When and why is a multi-level index recommended?

c. Can bucket overflow be eliminated in hashing? If yes, how?

d. Mention two index structures that can efficiently handle multiple-key queries.

e. What are the tree steps in query processing?

f. Consider a materialized view v = r 1 s. How can v be updated incrementally
if ir tuples are inserted into r?

g. Every view serializable schedule is also conflict serializable. Is this statement
correct?

h. What is a deadlock?

i. In log-based recovery with deferred DB modifications: What actions are re-
quired after a rolled back transaction?

j. Consider log-based recovery with immediate DB modifications and the follow-
ing log file: 〈T0, start〉, 〈T0, A, 1000, 950〉, 〈T0, B, 2000, 1950〉. What actions
are performed if the system crashes in this situation?

Exercise 2 (10 pt) The following table shows a file organization that represents
variable-length records using the pointer method (“↑ ri” denotes a pointer to record
ri, and ⊥ denotes the end of a chain).

r0 Jan P1 400 ↑ r2

r1 Joe P3 350
r2 P2 500 ⊥
r3 Ann P1 700 ↑ r4

r4 P4 900 ⊥

a. Show the file after the execution of the following steps:

• Insert(Jan, P7, 800)
• Insert(Ann, P2, 250)
• Delete(Jan, P1, 400)

b. Transform the result of a) into a pointer representation that uses an anchor
block and an overflow block.

c. What is the main disadvantage of the method in a) compared to the method
in b)?

2



Exercise 3 (20 pt) Consider the following relation, r:

Name Course Grade

r0 Tom ITP 30
r1 Tom DMS 30
r2 Aron CSA 18
r3 Ann OS 18
r4 Ann DMS 30
r5 Nick ITP 28
r6 Nick DSA 23
r7 Nick IDB 26
r8 Sue ITP 28
r9 Sue CSA 28

Show the following index structures and file organisations:

a. An index-sequential file organisation with a primary dense index on Name and
a secondary index on Grade.

b. A primary dense B+-tree index on Course. Assume n = 3 for the B+-tree.
The tuples are inserted in the order r0, r1, r2, . . . , r9.

c. A static hash file organisation on Grade with hash function h(n) = n mod 4.
Each bucket holds at most 2 tuples. The tuples are inserted in the order
r0, r1, r2, . . . , r9.

d. For the primary index in a: briefly describe (in pseudocode) the insertion of a
new tuple (name, course, grade); describe both the index update and the data
file update.

Exercise 4 (20 pt) Assume two relations r(A, B) and s(A, C) with |r| = 15.000.000
and |s| = 800.000. The block size is 2.000 Bytes, the tuple size 400 Bytes for both
relations. The values of the integer attribute A are uniformly distributed between 1
and 500.000 in relation r. The disk performance is given as follows: latency time =
0.008 sec, seek time = 0.016 sec, transfer time = 0.001 sec.

a. Consider a primary B+-tree index on attribute A in relation r, where each
node contains 100 index entries. Determine the number of blocks at each level
of the tree.

b. Determine the number of block IOs and the execution time for σA=x(r), if

• the index in a) is used
• the index is not used, and r might or might not be sorted on A.

c. Determine the number of block IOs for the following evaluation plans for s 1 r,
when M = 3 main memory buffer blocks are available:

• Plan p1: Block nested loop join

• Plan p2: Indexed nested loop join using the B+ index in a)

• Plan p3: Merge join (assume that the relations are already sorted)

d. Using the same strategies as in p1, p2, and p3: is r 1 s a better join ordering,
the same, or worse? Explain your answer.

3



Exercise 5 (10 pt) Consider relation r(A, B, C) with an index on the key attribute
A, relation s(C, D, E) with an index on C, and a materialized view v = r 1 s with
no index.

a. Describe an evaluation strategy for the RA expression σA=10(v).

b. Write an equivalent RA expression which allows a more efficient evaluation.
Explain the optimization step(s) and the evaluation of the new expression.
(Hint: consider the view v and the indexes)

c. Suppose that we have a third relation t(E, F ). What is the number of different
join orderings for r 1 s 1 t?

Exercise 6 (12 pt) Given is the following schedule over transactions T1, T2, T3:

T1 T2 T3

read(Z)
read(Y)
write(Y)

read(Y)
read(Z)

read(X)
write(X)

write(Y)
write(Z)

read(X)
read(Y)
write(Y)

write(X)

Answer the following questions and explain your answers:

a. Draw the conflict graph of this schedule and show whether the schedule is
conflict serializable or not.

b. Is the schedule view serializable to 〈T1, T2, T3〉?

c. Is the schedule recoverable if all transactions commit immediately after the
last operation?

Exercise 7 (8 pt) Given is the following schedule over transactions T1, T2:

T1 T2

read(A)
write(B)

read(B)

Answer and explain the following questions:

a. Is this schedule possible under the two-phase locking protocol? If yes, add the
lock and unlock instructions.

b. Is the schedule possible under the timestamp protocol?

4



Solution 1

a. LRU: replace the block least recently used
MRU: replace the block most recently used

b. If the (primary) index does not fit entirely in main memory.

c. No

d. Grid files and bitmap index

e. Parsing and translation, Optimization, Evaulation

f. vnew = vold ∪ (ir 1 s)

g. No

h. A system is in a deadlock state if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

i. Nothing; the log is ignored.

j. undo(T0), i.e., A is restored to 1000, and B is restored to 2000.

Solution 2

a. File after the 3 update operations:

r0

r1 Joe P3 350
r2 Jan P2 500 ↑ r5

r3 Ann P1 700 ↑ r4

r4 P4 900 ↑ r6

r5 P7 800 ⊥
r6 P2 250 ⊥

b. Pointer representation with anchor block and overflow block:

Anchor block:
r0 Joe P3 350
r1 Jan P2 500 ↑ s0

r2 Ann P1 700 ↑ s1

Overflow block:
s0 P7 800 ⊥
s1 P4 900 ↑ s2

s2 P2 250 ⊥

Note: This method (immediately) follows the pointer chains during the trans-
formation, thus (P7, 800,⊥) is the first overflow record. If the data records
are scanned sequentially, the order of tuples in the overflow block is different.

c. Space is wasted (i.e., the Name attribute is empty) in all records except the
first in a chain.

Solution 3

a. Index-sequential file organisation:

5



Ann

Aron

Nick

Sue

Tom

18

23

26

28

30

Ann OS 18

Ann DMS 30

Aron CSA 18

Nick ITP 28

Nick DSA 23

Nick IDB 26

Sue ITP 28

Sue CSA 28

Tom ITP 30

Tom DMS 30

Primary index on Name Secondary index on Grade

Note: Instead of buckets, several index entries might be used in the secondary
index.

b. B+-tree index

CSA DMS ITP OS

DSA ITP

IDBDSA

c. Hash file organization:

• The hash function computes the bucket: 18 mod 4 = 2, 23 mod 4 = 3,
26 mod 4 = 2, 28 mod 4 = 0, 30 mod 4 = 2

• Overflow buckets are used, if a bucket is already full.

Sue CSA 28ITP 28Nick

Sue 28ITP
Bucket 0

Bucket 1

DSA 23NickBucket 3

OS 18Ann

CSA 18Aron

DMS 30Tom

ITP 30TomBucket 2 DMSAnn 30

Nick IDB 26

Overflow buckets

d. Index and data update after inserting tuple (name, course, grade):
1. Perform a lookup in the index with search-key value name
2. If name does not appear in index:

– insert index record with name;
– locate last data record with largest Name value smaller than name;
– insert data record immediately after that record;
– make new index record point to the new data record;

3. Otherwise:
– the index needs not to be updated;
– follow index pointer to data file;
– insert new data record after the other records with search-key value name

Solution 4

– 2.000/400 = 5 data tuples/block for both relations
– Number of blocks for r: 15.000.000/5 = 3.000.000
– Number of blocks for s: 800.000/5 = 160.000

6



a. Nodes (=index blocks): 100 index entries per node
Index blocks required at each level:
- level 3: ⌈500.000/100⌉ = 5.000 blocks (leaf nodes)
- level 2: ⌈5.000/100⌉ = 50 blocks
- level 1: ⌈50/100⌉ = 1 block
⇒ 5.051 index blocks are needed in total

b. σA=x(r)
The B+-tree index is used:
– Traverse the tree: 3 index block IOs
– Read all data blocks with qualifying tuples (i.e., A = x)

– On avg. 15.000.000/500 = 30 qualifying data tuples = 6 data blocks
– Total block IOs: 3 + 6 = 9
– Time: 1 IO = 0.008 + 0.016s + 0.001s = 0.025s
– ⇒ 0.025 × 9 = 0.225 sec

B+-tree index is not used, r is sorted on B: use binary search on A
– ⌈log2 3.000.000⌉ = 22 blocks for binary search
– Total block IOs: 22 + 5 = 27
– Time: 27 ∗ 0.025 = 0.675 sec

B+-tree index is not used, r is not sorted on B: scan entire relation
– Total block IOs: 3.000.000
– Time: 3.000.000 ∗ 0.025 = 75.000 sec

c. s 1 r Plan p1: Block nested loop join
– Cost = bs∗br+bs = 160.000∗3.000.000+160.000 = 480.000.160.000 block IOs

Plan p2: Indexed nested loop join
– Cost = ns ∗ c + bs = 800.000 ∗ 9 + 160.000 = 7.360.000 block IOs

Plan p3: Merge join
– Avg. number of tuples with same A-value in s: 800.000/500.000 = 2
– All tuples with the same A-value fit in memory
– Cost = bs + br = 160.000 + 3.000.000 = 3.160.000 IOs

d. r 1 s Plan p1: Block nested loop join
– Cost = br ∗ bs + br = 3.000.000 ∗ 160.000 + 3.000.000 = 480.003.000.000 IOs
⇒ worse

Plan p2: Indexed nested loop join
– not applicable since there is no index on s
– block nested loop join has to be used
⇒ worse

Plan p3: Merge join
With the simplifying assumption that all tuples with the same A-value fit in
memory:
– Cost = br + bs = 3.000.000 + 160.000 = 3.160.000 block IOs
⇒ the same

A more realistic assumption:
– Avg. number of tuples with the same A-value in r: 30 (= 6 blocks)

7



– s-Tuples with the same A-values do not fit in memory)
– Block nested loop join required between tuples with identical values
– ⇒ worse

Solution 5

a. σA=10(v): Since there is no index and the data are not sorted, linear file scan
is the only way to evaluate the query. On average, only 50% of the relation
needs to be scanned, since at most one tuple with A = 10 exists.

b. Replace the view with its definition: σA=10(r 1 s)
Then push the selection down to r: σA=10(r) 1 s.

This expression is more efficient since it can take advantage of the indexes:
– use index scan on A to retrieve a single tuple that satisfies A = 10;
– use indexed nested-loop join to evaluate the join.

c. Number of join orderings for n relations: (2(n − 1))!/(n − 1)!
– For r 1 s 1 t: (2 ∗ (3 − 1))!/(3 − 1)! = 12

– Join orderings:
(r 1 s) 1 t, (s 1 r) 1 t, (r 1 t) 1 s, (t 1 r) 1 s, (s 1 t) 1 r, (t 1 s) 1 r,

r 1 (s 1 t), r 1 (t 1 s), s 1 (r 1 t), s 1 (t 1 s), t 1 (r 1 s), t 1 (s 1 r)

Solution 6

a. Conflict graph:

The schedule is not conflict serializable, since the conflict graph contains cycles.

b. No.
Example of violating a condition for view serializability: In the concurrent
schedule T2 reads the initial value of Y , and in 〈T1, T2, T3〉 the transaction
T2 reads the value of Y which is produced by T1 (but should read the initial
value).

c. No.
Because, for example, T3 reads Y which was produced by T2, hence T2 must
commit before T3 commits in order for the schedule to be recoverable. In other
words, if T3 commits and later T2 aborts, T3 must be rolled back, since it used
the value Y that was produced by T2 and is no longer valid; but T3 cannot roll
back after the commit, so the schedule is not recoverable.

Solution 7

a. Yes.

8



T1 T2

1 lock-S(A)
2 read(A)
3 lock-X(B)
4 write(B)
5 unlock(B)
6 lock-S(B)
7 read(B)
8 unlock(A)
9 unlock(B)

b. No.
We assume T0 = 0 and T1 = 1.
Then at step 4 the transaction T1 sets the W-timestamp of B to 1.
Then at step 7 the read(B) by T2 is rejected, since the timestamp of T0 is
smaller than 1.

9


