Database Management Systems Written Examination

18.09.2007

First name	Last name	
Student number	Signature	

Instructions for Students

- Write your name, student number, and signature on the exam sheet.
- Write your name and student number on every solution sheet you hand in.
- This is a closed book exam: the only resources allowed are blank paper, pens, and your head. Use a pen, not a pencil.
- Write neatly and clearly. The clarity of your explanations affects your grade.
- You have 120 minutes for the exam.

Exercise	Max. points	Points
1	20	
2	8	
3	12	
4	8	
5	20	
6	8	
7	12	
8	12	
Total	100	

Reserved for the Teacher

Exercise 1 Answer the following questions:

- a. Mention and briefly describe two buffer-replacement policies?
- b. Describe how to locate a record with search-key value K using a sparse index.
- c. What is the number of block accesses for a merge-join, assuming that the relations are sorted and the join attribute(s) in one relation forms a key.
- d. What are the two forms of materialized view maintenance?
- e. What are the three steps of query processing?
- f. What is specified in a query plan (evaluation plan)?
- g. Describe the A property of the ACID properties?
- h. What is a cascading rollback?
- i. What are the two phases of the two-phase locking protocol?
- j. Which two of the ACID properties are ensured by the recovery system?

Exercise 2 Consider the following file of variable-length records that stores the exams relation of exercise 4 using the byte string representation.

r_0	Jan	AI	С	3	DB	Α	2	DMS	В	2	\perp
r_1	Ann	AI	Α	3	CSA	D	1	\perp			
r_2	Bob	OS	С	1	DB	С	2	\perp			
r_3	Sue	DMS	Α	2	ITP	Α	1	\perp			
r_4	Joe	DMS	В	2	\perp						

- a. Show the file structure with fixed-length representation with reserved space.
- b. Show the file structure with fixed-length representation with pointers and anchor and overflow block.

Exercise 3 Consider a B^+ -tree, where at most 4 pointers fit into a single node.

a. The following is an incomplete B⁺-tree for the keys $\{10, 20, 30, 40, 50, 60\}$. Complete the tree.

- $40 \ 50 \ 60$
- b. Insert 25 and 18 (in that order). Show the resulting tree.
- c. Delete 30. Show the resulting tree.

Exercise 4 Consider the following relation exams:

	Name	Course	Grade	Year
0	Jan	AI	С	3
1	Jan	DB	А	2
2	Jan	DMS	В	2
3	Ann	AI	А	3
4	Ann	CSA	D	1
5	Bob	OS	\mathbf{C}	1
6	Bob	DB	\mathbf{C}	2
$\overline{7}$	Sue	DMS	А	2
8	Sue	ITP	А	1
9	Joe	DMS	В	2

- a. Create a bitmap index over the two most suitable attributes. Explain your choice.
- b. Describe the evaluation of $\sigma_{Course=DMS \land Grade=A \land Year=2}(exams)$ using the index.

Exercise 5 Consider a relation r(A, B) with a primary B⁺ tree index on attribute A and the following characteristics: |r| = 4,000,000; 100 index entries per block; 20 data tuples per block; the values of both attributes A and B are uniformly distributed in the range [1 - 10,000,000]; A forms a key; seek time = 0.016 sec; latency = 0.008 sec; transfer time = 0.001 sec.

- a. Determine the number of blocks (= number of nodes) used for the B⁺-tree if index blocks are filled up to 80%.
- b. Describe the evaluation and determine the number of block IOs (distinguishing between index blocks and data blocks) for the following queries:
 - Q1: $\sigma_{A>2Mio \land A<4Mio}(r)$
 - Q2: $\sigma_{A < 2Mio \vee A > 4Mio}(r)$
 - Q3: $\sigma_{A=5Mio \wedge B>5Mio}(r)$
 - Q4: $\sigma_{A>5Mio \vee B>5Mio}(r)$
- c. Determine the execution time for the queries in b.)

Exercise 6 For each of the following formulas, show that it is or is not a valid equivalence rule for query optimization, and if necessary, specify conditions for which this holds or does not hold.

a. $\sigma_{\theta}(E_1 - E_2) = \sigma_{\theta}(E_1) - E_2$ b. $\sigma_{\theta_1 \wedge \theta_2}(E_1 \bowtie E_2) = \sigma_{\theta_1}(E_1) \bowtie \sigma_{\theta_2}(E_2)$ c. $\pi_L(\sigma_{\theta}(E)) = \sigma_{\theta}(\pi_L(E))$ d. $\pi_A(E_1 - E_2) = \pi_A(E_1) - \pi_A(E_2)$

Exercise 7 Let relations r(A, B) and s(A, C) have the following properties: r has 10,000 tuples and 5 tuples of r fit into one block; s has 125 tuples and 10 tuples of s fit into one block. In relation r we have a hash index on attribute A, where 100 (search-key,pointer)-pairs fit into one bucket. Furthermore, the A-values in r are equally distributed over the A-values in s, and 20 blocks fit into main memory. Compute the cost of the following evaluation plans for $r \bowtie s$:

- Plan p1: Nested loop with r as outer loop
- Plan p2: Nested loop with s as outer loop and hashed lookup in r
- Plan p3: Hash join
- Plan p4: Merge join (assume r and s are already sorted)

T_1	T_2	T_3
	$\operatorname{read}(\mathbf{Z})$	
	read(Y)	
	write(Y)	
		read(Y)
		$\operatorname{read}(\mathbf{Z})$
read(X)		
write(X)		
		write(Y)
		write(Z)
	read(X)	
read(Y)		
write(Y)		
	$\operatorname{write}(\mathbf{X})$	

Exercise 8 Given is the following schedule that involves transactions T_1, T_2, T_3 :

- a. Draw the precedence graph of this schedule.
- b. Show that the schedule is not conflict serializable.
- c. Design a concurrent schedule of T_1, T_2 and T_3 that is conflict serializable. Specify also the equivalent serial schedule.
- d. Is the schedule possible under the timestamp ordering protocol? Explain your answer.

Solution 1

- a. LRU strategy: Replace the block least recently used. MRU strategy: Replace the block most recently used.
- b. First, find index record with largest search-key value $\langle K$. Then, search the data file sequentially starting at the record to which the index record points.
- c. $b_r + b_s$, where b_r and b_s are the number of blocks in relation r and s, respectively.
- d. Recomputation on every database update and incremental view maintenance.
- e. (i) Parsing and translation, (ii) optimization, (iii) evaluation
- f. Query plan defines what algorithm is used for each operation and how the execution of the operations is coordinated.
- g. Atomicity: A transaction's changes to the state of a DB are atomic, i.e., either all operations of a transaction are properly reflected in the DB or none are.
- h. A single transaction failure leasds to a series of transaction rollbacks.
- i. Growing phase and shrinking phase.
- j. Atomicity and durability.

Solution 2

a. Fixed-length representation with reserved space

0	Jan	AI	С	3	DB	Α	2	DMS	В	2
1	Ann	AI	А	3	CSA	D	1	\perp	\perp	\perp
2	Bob	OS	С	1	DB	С	2	\perp	\perp	\perp
3	Sue	DMS	А	2	ITP	Α	1	\perp	\perp	\perp
4	Joe	DMS	В	2	\perp	\perp	\perp	\perp	\perp	\perp

b. Fixed-length representation with pointers $(\uparrow x \text{ denotes a pointer to record } x)$

r_0	Jan	AI	С	3	$\uparrow o_0$
r_1	Ann	AI	Α	3	$\uparrow o_2$
r_2	Bob	OS	С	1	$\uparrow o_3$
r_3	Sue	DMS	Α	2	$\uparrow o_4$
r_4	Joe	DMS	В	2	\perp

o_0	DB	Α	2	$\uparrow o_2$
o_1	DMS	В	2	\perp
o_2	CSA	D	1	\perp
o_3	DB	С	2	\perp
o_4	ITP	Α	1	\perp

Solution 3

Solution 4

a. Grade and Year are the most suitable attributes for a bitmap index, since they have the smallest number of different values keeping the index as small as possible.

Grade A: [0 1 0 1 0 0 0 1 1 0] Grade B: [0 0 1 0 0 0 0 0 0 1] Grade C: [1 0 0 0 0 1 1 0 0 0] Grade D: [0 0 0 0 1 0 0 0 0] Year 1: [0 0 0 0 0 0 0 0 1 0] Year 2: [0 1 1 0 1 1 1 1 0 1] Year 3: [1 0 0 1 0 0 0 0 0]

b. Take the bitmap vector of Grade A and Year 2 and compute the logical AND: $[0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0]$ AND $[0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1] = [0 \ 1 \ 0 \ 0 \ 0 \ 0]$ 1 0 0]

Retrieve the tuple(s) with a '1' in the resulting bitmap vector, i.e., tuple no. 1 and tuple no. 7, and then select those tuples that have Course=DMS, i.e., (Sue, DMS, A, 2).

Solution 5

a. Index blocks:

0.8 * 100 = 80 index entries per block

Index blocks required at each level:

- level 4: [4,000,000/80] = 50,000 blocks (leaf nodes)
- level 3: [50, 000/80] = 625 blocks
- level 2: [625/80] = 8 blocks
- level 1: [8/80] = 1 block
- \Rightarrow 50,634 index blocks are needed in total
- b. Total number of data blocks: [4,000,000/20] = 200,000

Q1: Use index to locate the first tuple with A > 2 Mio, then scan the data relation sequentially. 4 index blocks (one at each level)

40,000 data blocks (= 20% of the data blocks) $\Rightarrow 4 + 40,000 = 40,004$ blocks in total

Q2: Scan data relation from the beginning until $A \ge 2Mio$; then use index to locate the first tuple with A > 4 Mio and scan the data relation sequentially from that point. Condition A < 2 Mio: 40,000 data blocks

Condition A>4 Mio: 4 index blocks + 120,000 data blocks = 120,004 blocks \Rightarrow 160,004 blocks in total

Q3: Use the index to find the tuple (if there is one) with A = 5 Mio and check this tuple for the second condition, B > 5 Mio. 4 index blocks (one at each level); 1 data block $\Rightarrow 4 + 1 = 5$ blocks in total

Q4: Scan all data blocks; index is not useful. $\Rightarrow 200,000$ data blocks in total

c. Execution time: 1 IO = 0.016 + 0.008s + 0.001s = 0.025sQ1: $40,004 \times 0.025s = 1,000.1s$ Q2: $160,004 \times 0.025s = 40,000.1s$ Q3: $5 \times 0.025s = 0.125s$ Q4: $200,000 \times 0.025s = 5,000s$

Solution 6

- a. Always correct. We proof this by showing set containment in both directions: (\longrightarrow) Assume that $\exists t \in \sigma_{\theta}(E_1 - E_2)$. Then t satisfies θ and $t \in E_1$ and $t \notin E_2$. Therefore we get $t \in \sigma_{\theta}(E_1)$. We get also $t \in \sigma_{\theta}(E_1) - E_2$ since $t \notin E_2$. (\longleftarrow) Assume that $\exists t \in \sigma_{\theta}(E_1) - E_2$. Then t satisfies θ and $t \in E_1$ and $t \notin E_2$. Therefore we get $t \in (E_1 - E_2)$, and since t satisfies θ we get further $t \in \sigma_{\theta}(E_1 - E_2)$.
- b. Correct, if θ_1 uses only attributes in E_1 and θ_2 uses only attributes in E_2 .
- c. Correct, if θ uses only attributes in L.
- d. Not correct. Consider the following couter example including two relations with schema (A, B): $E_1 = \{(1, 2), (1, 5)\}$ and $E_2 = \{(1, 2)\}$. The left-hand side is empty, whereas the right-hand side gives (1).

Solution 7

Blocks required for $r: \lceil 10,000/5 \rceil = 2,000$ blocks Blocks required for $s: \lceil 125/10 \rceil = 13$ blocks

Plan p1: $cost(p1) = n_r * b_s + b_r = 10,000 * 13 + 2,000 = 132,000$ block transfers

Plan p2: $cost(p2) = b_s + n_s * c = 13 + 125 * 16 = 2,013$ block transfers (c is the cost for the hashed lookup and retrieval of maching tuples: cost for lookup is 1; each s-tuple has on avg. 10,000/125 = 80 matching r-tuples, which corresponds to 80/5 = 16 blocks)

Plan p3: $cost(p3) = 3 * (b_r + b_s) = 3 * (2,000 + 13) = 6,039$

Plan p4: $cost(p4) = b_r + b_s = 2,000 + 13 = 2,013$

Solution 8

a. Precedence graph:

- b. There is a cycle in the precedence graph: $T_1 \xrightarrow{X} T_2$ and $T_2 \xrightarrow{Y} T_1$. Hence, the schedule is not conflict serializable.
- c. The following schedule is conflict serializable to the serial schedule $\langle T_3, T_1, T_2 \rangle$

T_1	T_2	T_3
		read(Y)
		read(Z)
read(X)		
write(X)		
		write(Y)
		write(Z)
	read(Z)	
read(Y)		
write(Y)		
	read(Y)	
	write(Y)	
	read(X)	
	write(X)	

d. No. There are conflicting read and write operations on Y in T_1 and T_2 , which are not executed in timestamp order.