Database Management Systems
Written Examination

22.06.2007
First name Last name
Student number Signature

Instructions for Students

e Write your name, student number, and signature on the exam sheet.
e Write your name and student number on every solution sheet you hand in.

e This is a closed book exam: the only resources allowed are blank paper, pens,
and your head. Use a pen, not a pencil.

e Write neatly and clearly. The clarity of your explanations affects your grade.

e You have 120 minutes for the exam.

Reserved for the Teacher

Exercise | Max. points | Points
1 20
2 8
3 12
4 8
) 20
6 8
7 12
8 12
Total 100

Exercise 1 Answer the following questions:

a.

b.

i.

j.

What is the buffer manager and what is its goal?

Which class of queries is better supported by the clustering file organization:
selection or join?

What index is preferrable for a range query: primary index or secondary index?
Explain your answer.

Which of the two index structures provides a more efficient access: BT-tree or
B-tree? Why?

What are the 3 steps of query processing?

Briefly describe the “linear search” algorithm (for the evaluation of selection
queries).

What is a schedule?
Does the two-phase locking protocol ensure conflict serializable schedules?
What is stored in the lock table?

What are the two different approaches for log-based recovery?

Exercise 2 Consider the following file organization using fixed-length records with
4 data fields and a free list (“] 7" denotes a pointer to record 1i).

a.

header T1
record 0 | BMW | 1990 | red | 10
record 1 T4

record 2 | BMW | 1991 red 2
record 3 | Fiat 1990 | white | 3
record 4 16
record 5 | Fiat 1991 | blue 3
record 6
record 7 | Ford | 1990 | blue 1
record 8 | Ford | 1990 red
record 9 | Ford | 1991 red 3

Show the structure of the file after each of the following steps (in that order):
(i) Insert(BMW,1991,blue,6)

(ii) Delete(record 2)

(iii) Insert(Ford,1990,white,7)

b. Describe a more space efficient representation of this file organization and

show the initial situation above using this representation. (Hint: Consider
which records contain free list pointers)

Exercise 3 Consider extensible hashing with a hash function h(n) = n mod 8 (n
is a key), yielding a hash value of 3 bits. Each bucket can hold 3 data items.

a. Consider the insertion of the keys 0,1,2,3,4,5,6,7 (in that order).

b. Consider the insertion of the keys 7,6,5,4,3,2,1,0 (in that order).

For a.) and b.) draw the hash index after inserting the first four keys and after
all the keys are inserted. Be sure to indicate the number of bits used in the bucket
address table as well as in each bucket.

Exercise 4 Consider the following relation:

Model Year Color Sold
VW 1990 red 10
VW 1990 blue 5
VW 1991 blue 5
VW 1992 blue 6
Ford 1990 Dblack 3

3
2

Ford 1990 blue
Ford 1991 red
Fiat 1990 red 20
Fiat 1990 blue 22
Fiat 1990 blue 22

© 00O T W+~ O

a. Create a bitmap index for the attributes 'Model’ and 'Color’ and compute the
size (in terms of Bytes) of the index.

b. Give a general formula for the size (Bytes) of a bitmap index for one attribute.

Exercise 5 Assume a relation sales(pid, category, ...) with 600,000 tuples,
where each tuple is 100 Bytes. The product ID pid is a key and is equally distributed
between 1 and 3,000,000. Furthermore, we have a block size of 2,000 Bytes, seek
time = 0.016 sec, latency = 0.008 sec, and transfer time = 0.001 sec.

a. Determine the number of data blocks needed to store the relation, if 25% of
each data block is reserved for future insertions.

b. Assume a Bt-tree index on the product ID pid (4 Bytes); a pointer requires
6 Bytes, and each tree node occupies an entire block. Determine the minimal
and maximal number of blocks used for the tree.

c. Consider the BT-tree from b.) with the minimal number of blocks and assume
that it is a primary index. Determine the number of IOs (data blocks + index
blocks) and the execution time for the following two queries:

Q1: SELECT * FROM sales WHERE pid BETWEEN 10000 AND 20000

Q2: SELECT CNT(*) FROM sales WHERE pid BETWEEN 10000 AND
20000

d. Repeat c.) but assume the BT-tree to be a secondary index.

Exercise 6 Consider relation r(A, B) with an index on the key attribute A, relation
s(B,(C) with an index on B, and a materialized view v = r X s with no index.

a. Describe an evaluation strategy for o4-1¢(v).

b. Write an equivalent RA expression which allows a more efficient evaluation.
Explain the optimization step(s) and the evaluation of the new expression.

Exercise 7 Let relations (A, B) and s(A,C) have the following properties: |r| =
10,000 with 50 tuples/block, |s| = 30,000 with 100 tuples/block, both relations are
sorted on A, A is a key in r, and one r-tuple matches on average two s-tuples.

Compute the cost for the following evaluation plans for query o4—1000(r X $):
a. Plan pl: Merge join followed by linear scan.

b. Plan p2: Merge join followed by binary search.

c. Which of the above plans allows pipelining between the join and the selection?

Exercise 8 Given is the following schedule for transactions 77 and T5:

Ty

15

read(B)

B:=B-50
write(B)

read(A)
A:=A+50

write(A)
display(A+B)

read(B)

read(A)

display(A+B)

a. Show the conflict graph of the schedule.

b. Is the schedule conflict serializable? Explain your answer.

¢. Add lock and unlock instructions to 77 and 75 so that they observe the two-

phase locking protocol.

d. Is the schedule possible under the two-phase locking protocol? Explain your

answer.

Solution 1

a.

i.

j-

Buffer manager is the subsystem which is responsible for buffering disk blocks
in main memory. Tries to minimize the number of disk accesses.

Join.

Primary index. Use the index only to locate the first data item; then you can
scan the data file. With a secondary index, you need the index to locate every
data item.

B-tree. Some search-key values (and corresponding data pointers) are in non-
leaf nodes, and hence are found before reaching a leaf node. In a BT-tree all
data pointers are in the leaves, hence the entire tree is always traversed.

(i) Parsing and translation, (ii) Optimization, (iii) Evaluation

Linear search algorithm: Scan each file block and test all records to see whether
they satisfy the selection condition.

Sequence of instructions from concurrent transactions indicating the chrono-
logical order in which these instructions are executed.

Yes.
The lock table stores granted locks and pending requests for locks.

Deferred DB modifications and immediate DB modifications

Solution 2

a.

(i) Insert(BMW,1991,blue,6)

header T4
record 0 | BMW | 1990 | red 10
record 1 | BMW | 1991 | blue 6
record 2 | BMW | 1991 red 2
record 3 | Fiat 1990 | white | 3
record 4 16
record 5 | Fiat 1991 | blue 3
record 6

record 7 | Ford | 1990 | blue 1
record 8 | Ford | 1990 red 7
record 9 | Ford | 1991 red 3

(ii) Delete(record 2)

header 12
record 0 | BMW | 1990 red 10
record 1 | BMW | 1991 | blue 6

record 2 T4
record 3 | Fiat | 1990 | white | 3
record 4 16
record 5 | Fiat | 1991 | blue 3
record 6

record 7 | Ford | 1990 | blue 1
record 8 | Ford | 1990 red
record 9 | Ford | 1991 red 3

EN

(iii) Insert(Ford,1990,white,7)

header 14
record 0 | BMW | 1990 red 10
record 1 | BMW | 1991 | blue 6
record 2 | Ford | 1990 | white | 7
record 3 | Fiat 1990 | white | 3
record 4 16
record 5 | Fiat 1991 | blue 3
record 6

record 7 | Ford | 1990 | blue 1
record 8 | Ford | 1990 | red 7
record 9 | Ford | 1991 red 3

b. The main idea is that free list pointers are only stored in empty (deleted)
records, hence the last column with the pointers is not needed. Instead, the
pointers can be stored in the data fields.

header T1
record 0 | BMW [1990 | red | 10
record 1 | T4

record 2 | BMW | 1991 red
record 3 Fiat 1990 | white

record4 | T6
record 5 | Fiat [1991 | blue |
record 6

record 7 | Ford | 1990 | blue
record 8 | Ford | 1990 red
record 9 | Ford | 1991 red

Solution 3

wl ~| — w wl o
N N N N
4 N o
ol w -

a.
2
2 0,1 2
00 1 2 00 1
o [23] o [
10 _ 1 10 _
4
0 s e~ n [
6,7
b.
2
2 1 2 1,0
I — o [TF
i -
10 - 2 10 - 2
1 n [=54]
2 2

7,6

N
o

Notice: The order of the data records in the buckets does not matter, hence the
result after inserting all records is the same in both cases.

Solution 4

a. Bitmap index:

— One bitmap vector for each different value of the Model attribute:
VW: [1111000000]

Ford: [00001110 0 0]

Fiat: [0000000 11 1]

— One bitmap vector for each different value of the Color attribute:
red: (100000110 0]
blue: (011101001 1]
black: [0 0001000 0 0]

Each bitmap vector requires 2 Bytes, thus the entire index requires 12 Bytes.

b. For a relation r with an attribute A assuming m different values in r, the size
(in Bytes) of a bitmap vector for A is:

size =m X [|r|/8] Bytes

Solution 5

a. Data blocks:
0.75 x 2,000 = 1,500 Bytes/block can be used
|1500/100| = 15 tuples/block
[600,000/15] = 40,000 data blocks are needed

b. Minimal number of index blocks when tree nodes are completely filled
|2,000/(4 4+ 6) | = 200 index entries/block
- leaf nodes: [600,000/200| = 3,000 blocks
- level n —1: [3,000/200] = 15 blocks
- level n —2: [15/200] = 1 block
= at least 3,016 index blocks are required

Maximal number of index blocks when tree nodes are only half full
|1,000/(4 4+ 6)| = 100 index entries/block

- leaf nodes: [600,000/100| = 6,000 blocks

- level n —1: [6,000/100] = 60 blocks

- level n —2: [60/100] = 1 block

= at most 6,061 index blocks are required

c. Average distance between pid values: 3,000,000/600,000 = 5
= @1 and Q2 retrieve (20,000 — 10,000)/5 = 2,000 tuples on average.

Time for 1 block I0: 0.016 + 0.008 4+ 0.001 = 0.025 sec.

Q1: Traverse the tree once to get the block of the first matching tuple, then
scan the data blocks for the other tuples.

— Block IOs: 3 index nodes + [2,000/15] = 134 data blocks = 137 10s

— Execution time: 137 x 0.025 = 3.43 sec

Q2: Traverse the tree once to get the leaf node with the first matching search-
key, then scan the leave nodes for the other matching keys. The tuples are not
needed to evaluate this query!

— Block I0s: 3 index nodes + 2,000/200 = 10 index leaf nodes = 13 10s

— Execution time: 13 x 0.025 = 0.33 sec

d. Q1: Traverse the tree once to get the leaf node with the first matching search-
key, then follow the leaf nodes for the other matching search-keys. For each
matching search-key, follow the data pointer and retrieve the tuple.

— Block I0s: 3+ 10 = 13 index nodes as in 2 above + 134 data blocks in the
best case (or 2,000 data blocks in the worst case) = 147 10s (or 2,013 IOs)
— Execution time: 147x0.025 = 3.68 sec in the best case (2,013x0.025 = 50.33
sec in the worst case

Q2: The same as in c.)

Solution 6

a.

o4=10(v): Since there is no index and the data are not sorted, linear file scan
is the only way to evaluate the query. On average, only 50% of the relation
needs to be scanned, since at most one tuple with A = 10 exists.

Replace the view with its definition: o4—10(r X s)
Then push the selection down to 7: o 4=10(r) X s.

This expression is more efficient since it can take advantage of the indexes:
— use index scan on A to retrieve a single tuple that satisfies A = 10;
— use indexed nested-loop join to evaluate the join.

Solution 7

— Blocks for r: b, = [10,000/50] = 200 blocks

— Blocks for s: by = [30,000/100] = 300 blocks

— Size of join result: Assume that 40 result tuples fit on a block (i.e., a result tuple is
a bit smaller than an r-tuple 4+ an s-tuple). Further assume that the join attribute A
is distributed in the same range in both relations. Then we get 10,000 x 2 = 20, 000
result tuples.

— Blocks for r M s: 20,000/40 = 500 blocks

a.

Plan pl:
— Merge-join: cost = b, + by = 200 4 300 = 500 block 10s
(4 500 block IOs for writing result back to disk if pipelining is not possible)
— Linear scan: on avg. 2,000 tuples have to be scanned
cost = 2,000/40 = 50 block 10s
Plan p2:

— Merge-join: cost = 500 block 10s
(4 500 block IOs for writing result back to disk if pipelining is not possible)
— Binary search: cost = [log2(20,000/40)] = [log2(5,000)] block 10s

Plan pl allows piplined evaluation. Plan P2 does not, because binary search
can only be done after all tuples are available.

Solution 8

a.

b.

C.

Conflict graph

The schedule is conflict serializable, since the conflict graph contains no cycles.
It is equivalent to the serial schedule (T5,77).

Lock and Unlock instructions:

T1 T2

Lock-X(B) Lock-S(B)
read(B) read(B)
B:=B-50 Lock-S(A)
write(B) read(A)
Lock-X(A) Unlock(B)
read(A) Unlock(A)
A:=A+50 display(A+B)
write(A)

Unlock(B)

Unlock(A)

display(A+B)

d. No. Consider the following partial schedule:

Ty | Ty
Lock-X(B)
read(B)
Lock-S(B)
read(B)

Since T3 holds an X-lock on B, transaction 75 has to wait until 77 releases this
lock, which is not according to the schedule in a.).

