
Database Management Systems

Written Examination

14.02.2007

First name Last name

Student number Signature

Instructions for Students

• Write your name, student number, and signature on the exam sheet.

• Write your name and student number on every solution sheet you hand in.

• This is a closed book exam: the only resources allowed are blank paper, pens,
and your head. Use a pen, not a pencil.

• Write neatly and clearly. The clarity of your explanations affects your grade.

• You have 120 minutes for the exam.

Reserved for the Teacher

Exercise Max. points Points

1 20
2 8
3 12
4 8
5 20
6 4
7 16
8 12

Total 100

1

Exercise 1 Answer the following questions:

1. What is minimized by disk-arm-scheduling algorithms (e.g., by the elevator
algorithm)?

2. What is the difference between a dense and a spares index?

3. What is an index-sequential file?

4. The non-leave nodes of a B+-tree form a sparse index on the leave nodes. Is
this statement true?

5. What are the two steps to evaluate σA≥v(r), if a primary index on A exists?

6. At what time during query processing does (query) optimization occur?

7. Is E1 1θ E2 = E2 1θ E1 a correct equivalence rule (for query optimization)?

8. Mention two advantages of multiple transaction that are executed in parallel.

9. What are the phases of the two-phase locking protocol?

10. What is deadlock prevention?

Exercise 2 Given is the following table with project assignments:

Employee Project Hours

Jan P1 800
Ann P1 250
Jan P2 400
Jan P3 500
Jan P4 900
Joe P3 350

a. Show two different ways of a file organization using the reserved space method
(variable-length records).

b. Assume the following memory requirements for the attribute values: Name =
20 bytes, Project = 10 bytes, Hours = 4 Bytes. Calculate the disk space used
by the two different solutions in (a).

c. How much disk space is wasted (unused) by the two solutions in (a)?

Exercise 3 Construct a B+-tree for the following set of key values:

(2, 3, 5, 7, 11, 17, 19, 23, 29, 31)

Assume that the tree is initially empty, and values are added in ascending order.
The number of pointers that will fit in one node is 4.

Exercise 4 Consider the relation Grades(Stud,Grade) that contains the follow-
ing tuples: (Jan, 25), (John, 25), (Ann, 25), (Sue, 18), (Pete, 30), (Sarah, 20),
(Ron, 27), (Julia, 22), (Bob, 18), (Luk, 23), (T im, 25). Further, assume that only
one tuple fits in a block, and the memory holds at most 3 blocks.

a. Show the runs created on each pass of the sort-merge algorithm, when applied
to sort the Grades relation.

b. What is the total number of block transfers ? Explain your answer.

2

Exercise 5 Assume two relations r(A) and s(A) with r being stored in a sequential
(ordered) file and s being stored in an unordered file on the disk. The block size
is 2,000 Bytes, the tuple size 10 Bytes, and the cardinality is 800,000 tuples for
both relations (assume identical instances). The values of the integer attribute A
are uniformly distributed between 5 Mio. and 9 Mio. and they are unique in both
relations. The disk performance is given as follows: latency time = 0.008 sec, seek
time = 0.016 sec, transfer time = 0.001 sec.

a. Determine the number of block IOs and the execution time for the following
queries on the two relations:
Q1: σA=6,000,000(x)
Q2: σA<5,009,500(x)

b. Determine the number of blocks at each level for a B+-tree for each of the two
relations. Each node contains 100 index entries and fills an entire block.

c. Determine the number of block IOs and the execution time for Q1 and Q2
when the B+-tree is used.

Exercise 6 Consider a bank database with the relation Branch(BN,BC,A) (BN
= branch-name, BC = branch-city, A = assets) and the following relational algebra
expressions:

• πT.BN (σT.A>S.A ∧ S.BC=′Brooklyn′(Branch/T × Branch/S))

Write an equivalent relational algebra expression which is more efficient. Justify
your choice.

Exercise 7 Let relations r1(A,B) and r2(A,C) have the following properties: r1

has 10,000 tuples, r2 has 30,000 tuples, and 50 tuples of r1 fit on one block, and 100
tuples of r2 fit on one block. The values of A are unique in both relations.

Compute the costs of the following evaluation plans for r1 1 r2:
a. Plan p1: Nested-loop join with r1 as outer relation
b. Plan p2: Nested-loop join with r2 as outer relation
c. Plan p3: Index nested-loop join using a B+-tree index with r1 as outer relation.

Each node (= block) contains 200 index entries.
d. Plan p4: Index nested-loop join using a hash index with r1 as outer relation.

Exercise 8 Given are two schedules S1, S2 over three transactions T1, T2, T3:

S1:

T1 T2 T3

read(A)
read(B)

write(A)
read(A)

write(B)
write(A)

read(B)
write(B)

S2:

T1 T2 T3

read(A)
read(B)

write(A)
read(B)

read(A)
write(B)

write(A)
write(B)

a. Show the conflict graphs of S1 and S2.

b. Are S1 and S2 conflict serializable? (explain your answer)

c. Are S1 and S2 view serializable? (explain your answer)

3

Solution 1

1. The disk-arm movement.

2. A dense index has an index record for every search-key value. A sparse index
has an index record for only some search-key values.

3. An index-sequential file is an ordered sequential file with a primary index.

4. Yes.

5. Step 1: Use index to find first tuple with A ≥ v.
Step 2: Scan relation sequentially from there.

6. After parsing the query and translating it to relational algebra.

7. Yes.

8. Increased processor and disk utilization.
Reduced average response time for transactions.

9. Phase 1: Growing phase (transactions may only obtain locks)
Phase 2: Shrinking phase (transactions may only release locks)

10. Deadlock prevention ensures that the system will never enter into a deadlock
state.

Solution 2

a. File organization with reserved space method for variable-length records:
– Solution I: One record for each person

0 Jan P1 800 P2 400 P3 500 P4 900
1 Ann P1 250 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
2 Joe P3 350 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

– Solution II: One record for each project

0 P1 Jan 800 Ann 250
1 P2 Jan 400 ⊥ ⊥
2 P3 Jan 500 Joe 350
3 P4 Jan 900 ⊥ ⊥

b. Memory requirements:
– Solution I: 1 record = (20 + 4 x 14) = 76 Bytes, total = 3 x 76 = 228 Bytes
– Solution II: 1 record = (10 + 2 x 24) = 58 Bytes, total = 4 x 58 = 232 Bytes

c. Unused disk space:
– Solution I: 6 x 14 = 84 Bytes
– Solution I: 2 x 24 = 48 Bytes

Solution 3

4

Solution 4

a. In the following we use only the names to refer to the tuples.

Step 1: Create 4 sorted runs with 3 tuples each:
(Ann, Jan, John), (Pete, Sara, Sue), (Bob, Julia, Ron), (Luk, Tim)

Step 2: Merge pass that merges two runs into one run. Thus the number of
runs decreases by the factor of 2:
(Ann, Jan, John, Pete, Sara, Sue), (Bob, Julia, Luk, Ron, Tim)

Step 3: The runs after the second merge pass are:
(Ann, Bob, Jan, John, Julia, Luk, Pete, Ron, Sara, Sue, Tim)

b. Step 1: 11 x 2 = 22 block transfers (read and write)
Step 2: 11 x 2 = 22 block transfers (read and write)
Step 3: 11 x 1 = 11 block transfers (only read)
⇒ 55 block transfers

Solution 5

a. 2, 000/10 = 200 tuples/block
800, 000/200 = 4, 000 blocks
1 IO = 0.008 + 0.016s + 0.001s = 0.025s

Q1: σA=6,000,000(r): Binary serach
– Block IOs: ⌈log2 4, 000⌉ = 12
– Time: 0.025 × 12 = 0.3 sec

Q1: σA=6,000,000(s): Sequential search
– Block IOs: on average read 2000 blocks (half of all) to find a unique value
– Time: 0.025 × 2000 = 50 sec

Q2: σA<5,009,500(r): Sequential search
– Block IOs:

avg. distance between values: 4Mio/800, 000 = 5
of qualifying tuples: 9, 500/5 = 1, 900
of qualifying blocks: ⌈1, 900/200⌉ = 10 block IOs

– Time: 10 × 0.025 = 0.25 sec

Q2: σA<5,009,500(s): Sequential search
– Block IOs: 4000 blocks
– Time: 0.025 × 4, 000 = 100 sec

b. Nodes (=index blocks): 100 index entries per node
Index blocks required at each level:
- level 3: ⌈800, 000/100⌉ = 8, 000 blocks (leaf nodes)
- level 2: ⌈8, 000/100⌉ = 80 blocks
- level 1: ⌈80/100⌉ = 1 block
⇒ 8, 081 index blocks are needed in total
The result is the same for r and s

c. Q1: σA=6,000,000(r): B+-tree search
– Block IOs: 3 index blocks + 1 data block = 4 blocks
– Time: 0.025 × 4 = 0.1 sec

Q1: σA=6,000,000(s): the same as for r

Q2: σA<5,009,500(r): Index makes no sense; hence the same result as in (a).

5

Q2: σA<5,009,500(s): Follow leave nodes in B+-tree
– Block IOs: Follow leave nodes from the beginning to locate the data blocks

of qualifying tuples (= # of qualifying key values): 1, 900
of qualifying blocks: max. 1, 900 (each qualifying tuple in different block)
of qualifying B+-tree nodes: ⌈1, 900/100⌉ = 19 (100 index entries/node)
Total: 1, 900 + 19 = 1, 919 block IOs

– Time: (1, 900 + 19) × 0.025 = 47.975sec

Solution 6

πT.BN (πT.BN,T.A(Branch/T) 1T.A>S.A πS.A(σS.BC=′Brooklyn′(Branch/S)))

This expression reduces Branch/S to only those values corresponding to assets of
branches in Brooklyn, which should be a small set. It also eliminates the unneeded
attributes from Branch/T on the left-hand side. Finally, it replaces the Cartesian
product by a theta-join.

Solution 7

Tuples of r1: nr1
= 10, 000

Tuples of r2: nr1
= 30, 000

Blocks required for r1: br1
= ⌈10, 000/50⌉ = 200 blocks

Blocks required for r2: br2
= ⌈30, 000/100⌉ = 300 blocks

a. Assume the worst case, where only one block of each relation fits in main
memory:
cost(p1) = nr1

∗ br2
+ br1

= 10, 000 ∗ 300 + 200 = 3, 000, 200

b. Assume the worst case, where only one block of each relation fits in main
memory:
cost(p2) = nr2

∗ br1
+ br2

= 30, 000 ∗ 200 + 300 = 6, 000, 300

c. Assume that only one block of r1 is in main memory and that for each tuple
in r1 an index lookup in the B+-tree is performed:
Depth of B+-tree: 2 ⇒ 2+1 = 3 block IOs to get a tuple
cost(p3) = br1

+ nr1
∗ (2 + 1) = 200 + 10, 000 ∗ 3 = 30, 200

d. Assume that only one block of r1 is in main memory and that for each tuple
in r1 a hash lookup is performed:
Cost of hash lookup: 1
cost(p4) = br1

+ nr1
∗ 1 = 200 + 10, 000 ∗ 1 = 10, 200

Solution 8

a. Conflict graphs

S1: S2:

b. S1 is conflict serializable, since the conflict graph contains no cycles. It is
equivalent to the serial schedule 〈T1, T2, T3〉.
S2 is not conflict serializable, since there is a cycle in the conflict graph.

c. Since S1 is conflict serializable, it is also view serializable.
S2 is not view serializable, since both T1 and T2 read the initial value of B and
modify B. Hence, it is impossible to create a serial schedule, where T1 and T2

read the initial value of B.

6

