
Database Management Systems

Written Examination

27.09.2006

First name: Last name

Student number Signature

Instructions for students

• Write your name, student number, and signature on the exam sheet.

• Write your name and student number on every solution sheet you hand in.

• This is a closed book exam: the only resources allowed are blank paper, pens,
and your head. Use a pen, not a pencil.

• Write neatly and clearly. The clarity of your explanations affects your grade.

• You have 120 minutes for the exam.

Reserved for the teacher

Exercise Max. points Points

1 20
2 8
3 12
4 8
5 16
6 8
7 16
8 12

Total 100

1

Exercise 1 Answer the following questions:

1. What are the three performance measures of hard disks?

2. What is a primary index?

3. Mention two index structures that are designed for efficient querying on mul-
tiple keys?

4. What is the number of block accesses for a merge-join, assuming that the
relations are sorted and the join attribute(s) in one relation forms a key.

5. What are the two forms of materialized view maintenance?

6. How works cost-based optimization?

7. What are the ACID properties?

8. How can a conflict graph be used to test for conflict serializability?

9. What are two pitfalls (problems) of lock-based protocols?

10. What are the two ways to address deadlocks?

Exercise 2 Given is the following table with project assignments:

Name Project Hours

Jan P7 800
Ann P2 250
Jan P1 400
Jan P3 500

To store this information in a file, we assume the use of one variable-length record
for each person, in which all project assignments for that person are stored.

a. Show the file organization using the reserved space method.

b. Show the file organization using the slotted page structure.

Exercise 3 Given is the following extandable hash table which uses the hash func-
tion h(x) = x mod 8 and a bucket size of 3:

2

2

3

3

2
3

7, 23, 31

5, 29

3, 11, 19

2

17

110
101
100
011
010
001
000

111

Show the hash table after each of the following operations (applied in that order):
• Insert 1
• Insert 46
• Delete 11
• Delete 19

2

Exercise 4 Given is the following table ProjAss with project assignments in a
company with 3 different departments:

Name Dept Project Hours
0 Jan DB P7 3100
1 Ann DB P2 700
2 Joe AI P1 1500
3 Bob SE P3 150
4 Pim SE P3 1850
5 Sue DB P10 5000
6 Bob SE P3 1300
7 Joe AI P17 180

a. Create a meaningful bitmap index on the attributes Dept and Hours (taking
into consideration that this table might change and become large). Motivate
your decision.

b. Describe and explain the use of this index for the evaluation of the query
σDept=′DB′∧(Hours>3000∨Hours<200)(ProjAss), i.e., all employees from the DB
department with very small (< 200) or very large (> 3000) project assign-
ments.

Exercise 5 Consider a relation r with schema (A, B), a primary B+ tree index on
attribute A, and the following characteristics: |r| = 4, 000, 000; 100 index entries per
block; 20 tuples per block; the values of A are uniformly distributed between 1 and
10, 000, 000; there are no two tuples with identical values on A.

a. Determine the number of blocks (= number of nodes) used for the B+-tree if
index blocks are filled up to 80%.

b. Determine the number of block IOs (distinguishing between index blocks and
data blocks) for the following queries:

• Q1: σA<5Mio(r)
• Q2: σA>5Mio(r)
• Q3: σA6=5Mio(r)

c. Is the use of the B+ tree index in all of the above queries useful? Explain your
answer.

Exercise 6 Which of the following equivalence rules for query optimization are
correct/not correct? Explain your answer and specify conditions under which a rule
holds or does not hold.

a. σθ1∧θ2∧θ3
(E) = σθ3

(σθ2
(σθ1

(E)))
b. σθ(E1 −E2) = σθ(E1)− E2

c. σθ1∧θ2
(E1 1 E2) = σθ1

(E1) 1 σθ2
(E2)

d. πL(σθ(E)) = σθ(πL(E))

Exercise 7 Let relations r1(A,B,C) and r2(C,D,E) have the following properties:
r1 has 20,000 tuples, r2 has 45,000 tuples, 25 tuples of r1 fit on one block, and 30
tuples of r2 fit on one block.

Compute the costs of the following evaluation plans for r1 1 r2:
a. Plan p1: Nested-loop join with r1 as outer relation
b. Plan p2: Block nested-loop join with r1 as outer relation
c. Plan p3: Merge join if r1 and r2 are initially sorted

3

d. Plan p4: Merge join if r1 and r2 are not initially sorted
e. Plan p5: Hash join (assuming that no overflow occurs)

Exercise 8 Given is the following schedule that involves transactions T1 and T2:

T1 T2

read(A)
write(A)

read(A)
read(B)

read(B)
write(B)

Answer the following questions and explain your answers:

a. Is the schedule conflict serializable?

b. Is the schedule view serializable?

c. Is the schedule recoverable if both transactions commit immediately after the
last operation?

d. Is the schedule cascadeless?

4

Solution 1

1. Access time, data-transfer rate, and mean time to failure.

2. The index whose search key specifies the sequential order of the file (table
rows).

3. Grid files and bitmap index.

4. br +bs, where br and bs is the number of blocks of relation r and s, respectively.

5. Recomputation on every database update or incremental view maintenance.

6. Cost-based optimization works in 3 steps:
1. Generating logically equivalent expressions (using equivalence rules);
2. Annotating resultant expressions to get alternative query plans;
3. Chooosing the cheapest plan based on estimated cost.

7. Atomicity (a transaction is atomic)
Consistency (a transaction leads to a consistent state)
Isolation (it appears to each transaction to be executed in isolation)
Durability (after a transaction completes successfully, the changes persist)

8. A schedule is conflict serializable, if its conflict graph is acyclic.

9. Too early unlocking can lead to non-serializable schedules. Too late unlocking
can lead to deadlocks.

10. Deadlock prevention (ensure that you never enter in a deadlock situation) and
deadlock detection/recovery (deadlock has to be detected and then resolved
by rolling back some transations)

Solution 2

a. Reserved space method for variable-length records

0 Jan P7 800 P1 400 P3 500
1 Ann P2 250 ⊥ ⊥ ⊥ ⊥

b. Slotted space structure for variable-length records

Free space

End of free space

Ann
P2, 250

entries

Block header Records

P7, 800, P1, 400, P3, 500
Jan

Solution 3

a. Insert 1: Key 1 is added to the first bucket, which becomes
2

1, 17

b. Insert 46: Key 46 is assigned to the last bucket and creates an overflow. The
last bucket is split into two buckets, the bucket address table is updated, and
the keys in this bucket are re-inserted.

5

3

2

3

3

2
3

46

5, 29

3, 11, 19

2

1, 17

110
101
100
011
010
001
000

111

7, 23, 31
3

c. Delete 11: Key 11 is removed from the third bucket. The second and third
buckets are coalesced and the bucket address table is updated.

2
3 1, 17

110
101
100
011
010
001
000

111
3

2

46

5, 29

2, 3, 19

7, 23, 31
3

2

d. Delete 19: Key 19 is removed from the second bucket, which becomes
2

2, 3

Solution 4

a. Bitmap indexes:
One bitmap vector for each different department:
DB: [1 1 0 0 0 1 0 0]

AI: [0 0 1 0 0 0 0 1]

SE: [0 0 0 1 1 0 1 0]

The values of the Hours attribute have to be split into a small number of
ranges, and a bitmap vector is created for each range, e.g.,
H1 (< 200): [0 0 0 1 0 0 0 1]

H2 (200-1000): [0 1 0 0 0 0 0 0]

H3 (1000-2000): [0 0 1 0 1 0 0 0]

H4 (2000-3000): [0 0 0 0 0 0 0 0]

H5 (> 3000): [1 0 0 0 0 1 0 0]

b. Take the bitmap vectors of H1 and H5 and compute the logical OR:
[0 0 0 1 0 0 0 1] OR [1 0 0 0 0 1 0 0] = [1 0 0 1 0 1 0 1]

Next, take this intermediate result and the bitmap vector of DB and compute
the logical AND:
[1 0 0 1 0 1 0 1] AND [1 1 0 0 0 1 0 0] = [1 0 0 0 0 1 0 0]

Retrieve the tuple(s) with a ’1’ in the resulting bitmap vector, i.e., tuple 0 and
tuple 5.

6

Solution 5

a. Index blocks:
0.8 ∗ 100 = 80 index entries per block
Index blocks required at each level:
- level 4: ⌈4, 000, 000/80⌉ = 50, 000 blocks (leaf nodes)
- level 3: ⌈50, 000/80⌉ = 625 blocks
- level 2: ⌈625/80⌉ = 8 blocks
- level 1: ⌈8/80⌉ = 1 block
⇒ 50, 634 index blocks are needed in total

b. Data blocks: ⌈4, 000, 000/20⌉ = 200, 000 blocks

Q1:
4 index blocks (one at each level)
100, 000 data blocks (= 50% of the data blocks)
⇒ 4 + 100, 000 = 100, 004 blocks are transfered in total
Note: Instead of reading the 4 index blocks, we could immediately start to
scan the data blocks.

Q2:
The same situation as for Q1 (except that the 4 index blocks have to be read)

Q3:
4 index blocks (one at each level)
200, 000 data blocks (all data blocks have to be read)
⇒ 4 + 200, 000 = 200, 004 blocks are transfered in total

c. In the first and the last query the index is not useful. In the first query, we
always have to scan data tuples from the beginning (remember that we use a
primary index). In the last query, all tuples have to be scanned. Hence, in
both cases we can simply start to scan the data tuples.

Solution 6

a. Always correct. We can show this by repeatedely applying the following two
equivalence rules:
(r1) σθ1∧θ2

(E) = σθ1
(σθ2

(E))
(r2) σθ1

(σθ2
(E)) = σθ2

(σθ1
(E))

σθ1∧θ2∧θ3
(E)

r1
= σθ1∧θ2

(σθ3
(E))

r2
= σθ3

(σθ1∧θ2
(E))

r1
= σθ3

(σθ1
(σθ2

(E)))
r2
=

σθ3
(σθ2

(σθ3
(E)))

b. Always correct. We proof this by showing set containment in both directions:
(−→) Assume that ∃t ∈ σθ(E1−E2). Then t satisfies θ and t ∈ E1 and t 6∈ E2.
Therefore we get t ∈ σθ(E1). We get also t ∈ σθ(E1)−E2 since t 6∈ E2.
(←−) Assume that ∃t ∈ σθ(E1) − E2. Then t satisfies θ and t ∈ E1 and
t 6∈ E2. Therefore we get t ∈ (E1 − E2), and since t satisfies θ we get further
t ∈ σθ(E1 −E2).

c. Correct, if θ1 uses only attributes in E1 and θ2 uses only attributes in E2.

d. Correct, if θ uses only attributes in L.

7

Solution 7

Tuples of r1: nr1
= 20, 000

Tuples of r2: nr1
= 45, 000

Blocks required for r1: br1
= ⌈20, 000/25⌉ = 800 blocks

Blocks required for r2: br2
= ⌈45, 000/30⌉ = 1500 blocks

a. cost(p1) = br1
+ nr1

∗ br2
= 800 + 20, 000 ∗ 1, 500 = 30, 000, 800

b. cost(p2) = br1
+ br1

∗ br2
= 800 + 800 ∗ 1, 500 = 1, 200, 800

c. We assume that all tuples for any given value of the join attributes fit in
memory:
cost(p3) = br1

+ br2
= 800 + 1, 500 = 2, 300

d. We have to add the cost of sorting (using external sort-merge) to the cost of
p3, i.e.,
cost(p4) = cost(p3) + cost(sorting)

cost(sorting relation r) = br(2⌈logM−1(br/M)⌉ + 1), where M is the
number of blocks in buffer. We have to add to these costs the output of the
sorted relation, i.e., add br block transfers.
⇒ cost(sorting) = 800 ∗ (2⌈logM−1(800/M)⌉ + 2) + 1, 500 ∗
(2⌈logM−1(1, 500/M)⌉ + 2)

e. cost(p5) = 3 ∗ (br1
+ br2

) = 3 ∗ (800 + 1, 500) = 6, 900

Solution 8

a. No. For both possible serial schedules, 〈T1, T2〉 and 〈T2, T1〉, we get either a
conflict with write(A)− read(A) or with write(B)− read(B).

b. No.
In the serial schedule 〈T1, T2〉, the following rule is violated for data item B:
For each data item Q, if transaction Ti reads the inital value of Q in schedule
S, then Ti must in scheule S′ also read the initial value of Q.
In the serial schedule 〈T2, T1〉, the following rule is violated for data item A:
For each data item Q, if transaction Ti reads data item Q in schedule S and
the value was produced by Tj, then Ti must in scheule S′ also read the value
of Q that was produced by Tj .

c. No. T1 might fail after T2 already committed.

d. No. If T1 fails after T2 executed the last operation (not yet committed), it
causes T2 to roll back.

8

