
Database Management Systems

Written Examination

16.06.2006

First name: Last name

Student number Signature

Instructions for students

• Write your name, student number, and signature on the exam sheet.

• Write your name and student number on every solution sheet you hand in.

• This is a closed book exam: the only resources allowed are blank paper, pens,
and your head. Use a pen, not a pencil.

• Write neatly and clearly. The clarity of your explanations affects your grade.

• You have 120 minutes for the exam.

Reserved for the teacher

Exercise Max. points Points

1 20
2 8
3 12
4 8
5 20
6 8
7 12
8 12

Total 100

1

Exercise 1 Answer the following questions:

1. What are the two methods to store variable-length records with a fixed-length
representation?

2. What are the two forms of pipelining in the evaluation of complex expressions?

3. Explain the two qualities of an ideal hash function?

4. Which of the two index strategies, hash function or primary B+-tree, is prefer-
able in the following cases (index is on A): (i) Equality selection on A, and
(ii) Range selection on A

5. What are the 3 steps in query processing?

6. What are two alternative ways to evaluate the following complex join over
relations r and s: r ×θ1∨θ2∨...∨θn

s

7. Consider the materialized view v = r 1 s and an update to r. How is the
incremental view maintenance defined for inserts (ir) and deletes (dr).

8. What are the states of a transaction and how is the transition between them?

9. What is the definition of a schedule?

10. What is required for a schedule to be cascadeless?

Exercise 2 The following table shows a file organization that represents variable-
length records using the pointer method (“↑ ri” denotes a pointer to record ri, and
⊥ denotes the end of a chain).

r0 Jan P1 400 ↑ r2

r1 Joe P3 350
r2 P2 500 ⊥
r3 Ann P1 700 ↑ r4

r4 P4 900 ⊥

a. Show the file after the execution of the following steps:

• Insert(Jan, P7, 800)
• Insert(Ann, P2, 250)
• Delete(Jan, P1, 400)

b. Transform the result of a.) into a pointer representation that uses an anchor
block and an overflow block.

Exercise 3 Given is the following B+-tree:

Show the B+-tree after the first and the last of the following operations (applied in
that order):

• Insert 10
• Insert 8
• Delete 23

2

Exercise 4 Consider the following student relation stud, where the grade ranges
from A to D and the year ranges from 1 to 3:

Name Course Grade Year
0 Jan AI B 2
1 Jan DB A 2
2 Jan ITP B 1
3 Ann OS C 1
4 Bob CSA A 1
5 Bob IC D 2
6 Sue BIS C 2
7 Sue DBMS A 2

a. Create a bitmap index on the attributes Grade and Year.

b. Explain the use of this index for the evaluation of σGrade=A∧Y ear=1(stud) (all
students with an A grade in year 1)

Exercise 5 Consider a relation emp with schema (ID, Name, Dept, Salary) and the
following characteristics: |emp| = 1, 000, 000; the size of the attribute values is:
ID = 4 bytes, Name = 50 bytes, Dept = 30 bytes, Salary = 6 bytes. The ID values
are equally distributed between 1 and 10, 000, 000, and there are no two tuples with
identical ID. A pointer occupies 6 bytes, and we assume a block size of 2, 000 bytes.
Further, we assume seek time = 0.016 sec, latency = 0.016 sec, and transfer time =
0.001 sec.

a. Determine the number of blocks needed to store the relation emp if 10% of
each data block are reserved for future insertions.

b. Assume a B+-tree index on the attribute ID. Determine the number of blocks
(= number of nodes) used for the B+-tree if index blocks are filled up to 75%.

c. Consider the following two queries:

• Q1: σID=1Mio(r)
• Q2: σID>7.5Mio(r)

Determine the number of block IOs (distinguishing between index blocks, data
blocks, and total number of blocks) for the following two cases: (i) the B+-tree
is a primary index and (ii) the B+-tree is a secondary index.

d. Determine the execution time for the queries in c.)

Exercise 6 Assume two relations r(A,C) and s(B,D) and the following relational
algebra expression:

σA<10∧B>100∧A+B<200(r × s)

Transform this selection statement into a more efficient expression by applying some
equivalence rules. Explain your choice and why the new expression is more efficient.

Exercise 7 Let relations r1(A,B) and r2(A,C) have the following properties: r1

has 10, 000 tuples and 5 tuples of r1 fit into one block; r2 has 125 tuples and 10
tuples of r2 fit into one block. We have a hash index on attribute A in relation r1.

Compute the costs of the following evaluation plans for r1 1 r2:
• Plan p1: Nested loop with r1 as outer loop
• Plan p2: Nested loop with r2 as outer loop and hashed lookup in r1

• Plan p3: Hash join

3

Exercise 8 Given is the following schedule that involves transactions T1, T2, T3:

T1 T2 T3

read(Z)
read(Y)
write(Y)

read(Y)
read(Z)

read(X)
write(X)

write(Y)
write(Z)

read(X)
read(Y)
write(Y)

write(X)

a. Draw the precedence graph of this schedule.

b. Show that the schedule is not conflict serializable.

c. Design a concurrent schedule of T1, T2 and T3 that is conflict serializable.
Specify also the equivalent serial schedule.

4

Solution 1

1. Reserved space and pointers

2. Demand-driven (or lazy) evalution and produce-driven (or eager) evaluation

3. The distribution is uniform: Each bucket is assigned the same number of
search-key values from the set of all possible values.
The distribution is random: In the average case each bucket will have the
same number of records assigned to it irrespective of the actual distribution of
search-key values in the file.

4. Equality selection on A: hash function
Range selection on A: B+-tree index

5. Parsing and translation, optimization, evaluation

6. Use nested loops/block nested loops
Compute as the union of the individual joins r×θi

s, i.e., r×θ1
s∪ . . .∪ r×θn

s

7. For inserts: vnew = vold ∪ (ir 1 s)
For deletes: vnew = vold − (dr 1 s)
where vnew is the new view and vold is the old view before the update.

8. States: active, partially committed, committed, failed, aborted
Transitions: active → partially committed, partially committed →
committed, partially committed → failed, active → failed, failed →
aborted

9. A schedule is a sequence that indicates the chronological order in which instruc-
tions of concurrent transactions are executed. It must consist of all instruc-
tions of all involved transactions and it must preserve the order of instructions
within each individual transaction.

10. For each pair of transactions Ti and Tj such that Tj reads a data item pre-
viously written by Ti, the commit operation of Ti appears before the read
operation of Tj.

Solution 2

a. File after the 3 update operations:

r1 Joe P3 350
r2 Jan P2 500 ↑ r5

r3 Ann P1 700 ↑ r4

r4 P4 900 ↑ r6

r5 P7 800 ⊥
r6 P2 250 ⊥

b. Pointer representation with anchor block and overflow block:

Anchor block:
r0 Joe P3 350
r1 Jan P2 500 ↑ s0

r2 Ann P1 700 ↑ s1

Overflow block:
s0 P7 800 ⊥
s1 P4 900 ↑ s2

s2 P2 250 ⊥

5

Solution 3

• After Insert 10

• After Insert 8 and Delete 23

Solution 4

a. Bitmap indexes:
Grade A: [0 1 0 0 1 0 0 1]

Grade B: [1 0 1 0 0 0 0 0]

Grade C: [0 0 0 1 0 0 1 0]

Grade D: [0 0 0 0 0 1 0 0]

Year 1: [0 0 1 1 1 0 0 0]

Year 2: [1 1 0 0 0 1 1 1]

Year 3: [0 0 0 0 0 0 0 0]

b. Take the bitmap vector of Grade A and Year 1 and compute the logical AND:
[0 1 0 0 1 0 0 1] AND [0 0 1 1 1 0 0 0] = [0 0 0 0 1 0 0 0]

Retrieve the tuple(s) with a ’1’ in the resulting bitmap vector, i.e., tuple 4.

Solution 5

a. Data blocks:
0.9 ∗ 2, 000 = 1, 800 bytes used in every data block
⌊1, 800/(4 + 50 + 30 + 6)⌋ = 20 tuples/block
⌈1, 000, 000/20⌉ = 50, 000 data blocks needed for emp

b. Index blocks:
0.8 ∗ 2000 = 1, 600 bytes used in every index block
⌊1, 500/(4 + 6)⌋ = 150 index entries/block
- level 3 (leaf nodes): ⌈1, 000, 000/150⌉ = 6, 667 blocks
- level 2: ⌈6, 667/150⌉ = 45 blocks
- level 1: ⌈45/150⌉ = 1 block
⇒ 6, 713 index blocks are needed

c. Q1 – (i) primary index:
3 index blocks (one at each level)
1 data block

6

⇒ 3 + 1 = 4 blocks are transfered in total

Q1 – (ii) secondary index: the same as for primary index

Q2 – (i) primary index:
3 index blocks (one at each level) to locate the first tuple
⌈250, 000/20⌉ = 12, 500 data blocks to retrieve (on avg. 250, 000 tuples match,
and all matching tuples are in contiguous blocks
⇒ 3 + 12, 500 = 12, 503 blocks are transfered in total

Q2 – (ii) secondary index:
On avg. 250, 000 data tuples match
3 index blocks (one at each level) to locate the first tuple
⌈250, 000/150⌉ = 1667 index (leaf) nodes/blocks to locate the other tuples
250, 000 data blocks to retrieve (in the worst case each matching tuple might
be in a different block)
⇒ 3 + 1, 667 + 250, 000 = 251, 670 blocks are transfered in total
(a full scan of the data relation without using the index would be more
efficient)

d. Execution time:
Q1 – (i) primary index: 4 ∗ 0.033 = 0.132 sec
Q1 – (ii) secondary index: the same as for primary index
Q2 – (i) primary index: 12, 503 ∗ 0.033 = 412.6 sec
Q2 – (ii) secondary index: 251, 670 ∗ 0.033 = 8, 305.1 sec

Solution 6 A part of the selection condition (A < 10) refers only to relation r and
another part (B > 100) refers only to relation s. These two conditions can therefore
be applied to the argument relations before the evaluation of the Cartesian product,
reducing in this way the size of the Cartesian product. Additionally, the conidtion
A+B < 200 can be moved to the Cartesian product, yielding a join. The transformed
expression is: (σA<10(r)) 1A+B<200 (σB>100(s))

Solution 7

Blocks required for r1: ⌈10, 000/5⌉ = 2, 000 blocks
Blocks required for r2: ⌈125/10⌉ = 13 blocks

Plan p1:
cost(p1) = nr1

∗ br2
+ br1

= 10, 000 ∗ 13 + 2, 000 = 132, 000 block transfers

Plan p2:
cost(p2) = br2

+ nr2
∗ c = 13 + 125 ∗ 16 = 2, 013 block transfers

(c is the cost for the hashed lookup and retrieval of machting tuples: cost for
lookup is 1; each r2-tuple has on avg. 10, 000/125 = 80 matching r1-tuples, which
corresponds to 80/5 = 16 blocks)

Plan p3:
cost(p3) = 3 ∗ (2, 000 + 13) = 6, 039

7

Solution 8

a. Precedence graph:

b. There is a cycle in the precedence graph: T1
X
→ T2 and T2

Y
→ T1. Hence, the

schedule is not conflict serializable.

c. The following schedule is conflict serializable to the serial schedule 〈T3, T1, T2〉

T1 T2 T3

read(Y)
read(Z)

read(X)
write(X)

write(Y)
write(Z)

read(Z)
read(Y)
write(Y)

read(Y)
write(Y)
read(X)
write(X)

8

