Database Management Systems Written Exam

15.02.2012

First name	Last name	
Student number	Signature	

Instructions for Students

- Write your name, student number, and signature on the exam sheet and on every solution sheet you hand in.
- This is a closed book exam: the only resources allowed are blank paper, pens, and your head. Use a pen, not a pencil.
- Write neatly and clearly. The clarity of your explanations affects your grade.
- You have 2 hours for the exam.

Good luck!

Exercise	Max. points	Points
1	20	
2	8	
3	12	
4	8	
5	20	
6	12	
7	8	
8	12	
Total	100	

Reserved for the Teacher

Exercise 1 (20 pt) Answer the following questions:

- a. What is minimized by disk-arm-scheduling algorithms (e.g., by the elevator algorithm)?
- b. What is the difference between a dense and a sparse index?
- c. Can bucket overflow be avoided in hashing?
- d. Assume $M \ge 3$ main memory blocks. How many blocks shall be used for the outer relation in a (block) nested loop join?
- e. Which strategy for the evaluation of complex expression is more efficient: materialization or pipelining?
- f. Is $E_1 \Join_{\theta} E_2 = E_2 \Join_{\theta} E_1$ a correct equivalence rule (for query optimization)?
- g. Describe the A property of the ACID properties?
- h. Is the following statement correct: Every view serializable schedule is also conflict serializable?
- i. What is stored in the lock table?
- j. For log-based recovery with deferred DB modifications: What actions are performed if a transaction is rolled back?

Exercise 2 (8 pt) Consider the following file of variable-length records that stores the exams relation of exercise 4 by using the byte string representation.

r_0	Jan	AI	С	3	DB	Α	2	DMS	В	2	\perp
r_1	Ann	AI	Α	3	CSA	D	1	\perp			
r_2	Bob	OS	С	1	DB	С	2	\perp			
r_3	Sue	DMS	Α	2	ITP	Α	1	1			
r_4	Joe	DMS	В	2	\perp						

- a. Show the file structure with fixed-length representation with reserved space.
- b. Show the file structure with fixed-length representation with pointers and anchor and overflow block.

Exercise 3 (12 pt) Consider a B^+ -tree, where at most 4 pointers fit into a single node.

a. The following is an incomplete B⁺-tree for the keys $\{10, 20, 30, 40, 50, 60\}$. Complete the tree.

10 20) 30	40	50	60

- b. Insert 25 and 18 (in that order). Show the resulting tree.
- c. Delete 30. Show the resulting tree.

	Name	Course	Grade	Year
0	Jan	AI	С	3
1	Jan	DB	А	2
2	Jan	DMS	В	2
3	Ann	AI	А	3
4	Ann	CSA	D	1
5	Bob	OS	\mathbf{C}	1
6	Bob	DB	\mathbf{C}	2
7	Sue	DMS	Α	2
8	Sue	ITP	А	1
9	Joe	DMS	В	2

Exercise 4 (8 pt) Consider the following relation exams:

- a. Create a bitmap index over the two attributes which are most suitable for such an index. Explain your choice.
- b. Describe the evaluation of $\sigma_{Course=DMS \land Grade=A \land Year=2}(exams)$ using the index.

Exercise 5 (20 pt) Consider a relation r(A, B) with a primary B⁺ tree index on attribute A and the following characteristics: |r| = 4,000,000;100 index entries per block; 20 data tuples per block; the values of both attributes A and B are uniformly distributed in the range [1 - 10,000,000]; A forms a key; seek time = 0.016 sec; latency = 0.008 sec; transfer time = 0.001 sec.

- a. Determine the number of blocks (= number of nodes) used for the B⁺-tree if index blocks are filled up to 80%.
- b. Describe the evaluation and determine the number of block IOs (distinguishing between index blocks and data blocks) for the following queries:
 - Q1: $\sigma_{A>2Mio \land A<4Mio}(r)$
 - Q2: $\sigma_{A < 2Mio \lor A > 4Mio}(r)$
 - Q3: $\sigma_{A=5Mio \wedge B>5Mio}(r)$
 - Q4: $\sigma_{A>5Mio \vee B>5Mio}(r)$
- c. Determine the execution time for the queries in b.)

Exercise 6 (12 pt) Let relations r(A, B) and s(A, C) have the following properties: r has 10,000 tuples and 5 tuples of r fit into one block; s has 125 tuples and 10 tuples of s fit into one block. In relation r we have a hash index on attribute A, where 100 (search-key,pointer)-pairs fit into one bucket. Furthermore, the A-values in r are equally distributed over the A-values in s, and 20 blocks fit into main memory. Compute the cost of the following evaluation plans for $r \bowtie s$:

- a. Plan p1: Nested loop with r as outer loop
- b. Plan p2: Hash join
- c. Plan p3: Merge join (assume r and s are already sorted)

Exercise 7 (8 pt) Assume two relations r(A, C) and s(B, D) and the following relational algebra expression:

 $\sigma_{A<10\wedge B>100\wedge A+B<200}(r\times s)$

- a. Transform this selection statement into a more efficient expression by applying some equivalence rules. Explain your choice and why the new expression is more efficient.
- b. Assume that you can create one single-attribute index on either relation r or s to improve the evaluation of the expression obtained in a.). Which index (type, relation, attribute) would you create? Motivate your choice and briefly describe the evaluation strategy with this index.

Exercise 8 (12 pt) Given is the following schedule that involves transactions T_1 and T_2 :

Answer the following questions and explain your answers:

- a. Draw the conflict graph and show whether the schedule is conflict serializable or not?
- b. Is the schedule recoverable if both transactions commit immediately after the last operation?
- c. Is the schedule possible under the timestamp protocol?

Solution 1

- a. Disk-arm movement
- b. A dense indes has an index record for every search-key value. A sparse index has an index record only for some search-key values.
- c. No
- d. M-2
- e. Pipelining
- f. Yes
- g. Atomicity: A transaction's changes to the state of a DB are atommic, i.e., either all operations of a transaction are properly reflected in the DB or none are.
- h. No
- i. Granted locks and pending requests for locks
- j. No actions need to be done

Solution 2

a. Fixed-length representation with reserved space

0	Jan	AI	С	3	DB	Α	2	DMS	В	2
1	Ann	AI	Α	3	CSA	D	1	\perp	\perp	\perp
2	Bob	OS	С	1	DB	С	2	\perp	\perp	\perp
3	Sue	DMS	Α	2	ITP	Α	1	\perp	\perp	\perp
4	Joe	DMS	В	2	\perp	\perp	\perp	\perp	\perp	\perp

b. Fixed-length representation with pointers ($\uparrow x$ denotes a pointer to record x)

Jan	AI	С	3	\Box
Ann	AI	Α	3	
Bob	OS	С	1	
Sue	DMS	Α	2	
Joe	DMS	В	2	
o_0	DB	Α	2	\mathbf{R}
o_1	DMS	В	2	\rightarrow
o_2	CSA	D	1	
o_3	DB	С	2	
o_4	ITP	А	1	
	$\begin{array}{c} \text{Jan} \\ \text{Ann} \\ \text{Bob} \\ \text{Sue} \\ \text{Joe} \\ \end{array}$	$\begin{array}{c c c c c c c c } Jan & AI \\ \hline Ann & AI \\ \hline Bob & OS \\ \hline Sue & DMS \\ \hline Sue & DMS \\ \hline Joe & DMS \\ \hline Joe & DMS \\ \hline o_0 & DB \\ \hline o_1 & DMS \\ \hline o_2 & CSA \\ \hline o_3 & DB \\ \hline o_4 & ITP \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccc} Jan & AI & C & 3\\ \hline Ann & AI & A & 3\\ \hline Bob & OS & C & 1\\ \hline Sue & DMS & A & 2\\ \hline Joe & DMS & B & 2\\ \hline \\ o_0 & DB & A & 2\\ o_1 & DMS & B & 2\\ o_2 & CSA & D & 1\\ o_3 & DB & C & 2\\ o_4 & ITP & A & 1\\ \hline \end{array}$

Solution 3

a.

Solution 4

a. *Grade* and *Year* are the most suitable attributes for a bitmap index, since they have the smallest number of different values keeping the index as small as possible.

Grade A: $\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$ Grade B: $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ Grade C: $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$ Grade D: $\begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ Year 1: $\begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$ Year 2: $\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$ Year 3: $\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

b. Take the bitmap vector of Grade A and Year 2 and compute the logical AND:
[0 1 0 1 0 0 0 1 1 0] AND
[0 1 1 0 0 0 1 1 0 1]

[0 1 0 0 0 0 0 1 0 0]

Retrieve the tuple(s) with a '1' in the resulting bitmap vector, i.e., tuple no. 1 and tuple no. 7, and then select those tuples that have Course=DMS, i.e., (Sue, DMS, A, 2).

Solution 5

- a. Index blocks:
 - 0.8 * 100 = 80 index entries per block
 - Index blocks required at each level:
 - level 4: [4,000,000/80] = 50,000 blocks (leaf nodes)
 - level 3: [50, 000/80] = 625 blocks
 - level 2: $\lceil 625/80 \rceil = 8$ blocks
 - level 1: [8/80] = 1 block
 - \Rightarrow 50,634 index blocks are needed in total
- b. Total number of data blocks: [4,000,000/20] = 200,000

Q1: Use index to locate the first tuple with A > 2 Mio, then scan the data relation sequentially. 4 index blocks (one at each level) 40,000 data blocks (= 20% of the data blocks) $\Rightarrow 4 + 40,000 = 40,004$ blocks in total

Q2: Scan data relation from the beginning until $A \ge 2Mio$; then use index to locate the first tuple with A > 4 Mio and scan the data relation sequentially from that point. Condition A < 2 Mio: 40,000 data blocks

Condition A > 4 Mio: 4 index blocks + 120,000 data blocks = 120,004 blocks \Rightarrow 160,004 blocks in total

Q3: Use the index to find the tuple (if there is one) with A = 5 Mio and check this tuple for the second condition, B > 5 Mio. 4 index blocks (one at each level); 1 data block $\Rightarrow 4 + 1 = 5$ blocks in total

Q4: Scan all data blocks; index is not useful. $\Rightarrow 200,000$ data blocks in total

c. Execution time: 1 IO = 0.016 + 0.008s + 0.001s = 0.025sQ1: $40,004 \times 0.025s = 1,000.1s$ Q2: $160,004 \times 0.025s = 40,000.1s$ Q3: $5 \times 0.025s = 0.125s$ Q4: $200,000 \times 0.025s = 5,000s$

Solution 6

Blocks required for $r: \lceil 10,000/5 \rceil = 2,000$ blocks Blocks required for $s: \lceil 125/10 \rceil = 13$ blocks

- a. Plan p1: $cost(p1) = n_r * b_s + b_r = 10,000 * 13 + 2,000 = 132,000$ block transfers
- b. Plan p2: $cost(p3) = 3 * (b_r + b_s) = 3 * (2,000 + 13) = 6,039$
- c. Plan p3: $cost(p4) = b_r + b_s = 2,000 + 13 = 2,013$

Solution 7

a. First, since condition A < 10 refers only to relation r, it can be pushed down to r. Similar, B > 100 can be pushed down to s, and we get $\sigma_{A+B<200}(\sigma_{A<10}(r) \times \sigma_{B>100}(s))$, which produces a smaller Cartesian product.

Second, the condition A + B < 200 can be pushed down to transform the Cartesian product into a join. The final expression is then: $\sigma_{A<10}(r) \bowtie_{A+B<200} \sigma_{B>100}(s)$

b. Create an ordered index on attribute B of relation s. The index can then be used to locate the first tuple with B > 100 and then continue to scan the relation. An index for the condition on relation r is not useful, since the relation is anyway scanned from the beginning.

Solution 8

a. No. For both possible serial schedules, $\langle T_1, T_2 \rangle$ and $\langle T_2, T_1 \rangle$, we get either a conflict with write(A) - read(A) or with write(B) - read(B).

- b. No. T_1 might fail after T_2 already committed (and T_2 used A which was produced by T_1).
- c. No. Assume $ts(T_1) = 1$ and $ts(T_2) = 2$. Then T_2 sets the read timestamp of B to R ts(B) = 2. When T_1 wants to write B, we have $ts(T_1) < R ts(B)$, thus the write operation is rejected and T_1 is rolled back. If $ts(T_2) = 1$ and $ts(T_1) = 2$ the same situation appears with the data item A.