
Database Management Systems

Written Examination

24.06.2011

First name Last name

Student number Signature

Instructions for Students

• Write your name, student number, and signature on the exam sheet.

• Write your name and student number on every solution sheet you hand in.

• This is a closed book exam: the only resources allowed are blank paper, pens,
and your head. Use a pen, not a pencil.

• Write neatly and clearly. The clarity of your explanations affects your grade.

• You have 120 minutes for the exam.

Reserved for the Teacher

Exercise Max. points Points

1 20
2 10
3 20
4 20
5 10
6 10
7 10

Total 100

1



Exercise 1 (20 pt) Answer the following questions:

a. What is minimized by the buffer manager? access?

b. What index is preferrable for range queries: primary index or secondary index?

c. What are the two properties of an ideal hash function?

d. Assuming M memory blocks, what is the best way to use these blocks in the
block nested loop join?

e. The non-leave nodes of a B+-tree form a dense index on the leave nodes. Is
that correct?

f. What is the cost of the nested loop join in the best case?

g. What is a cascading rollback?

h. The wait-for graph is used to detect conflict serializability or deadlocks?

i. Does the two-phase-locking protocol ensure freedom from deadlocks?

j. For log-based recovery with immediate DB modifications: What actions are
performed after a crash?

Exercise 2 (10 pt) Given is the following table with project assignments:

Employee Project Hours

Jan P1 800
Ann P1 250
Jan P2 400
Jan P3 500
Jan P4 900
Joe P3 350

Consider the storage of the table using a variable-length record for each employee.

a. Show the file organization using fixed-length representation with reserved
space.

b. Show the file organization using fixed-length representation with pointer (with-
out overflow block).

c. Assume the following memory requirements for the attributes: Employee =
20 Bytes, Project = 10 Bytes, Hours = 4 Bytes. A pointer requires 4 Bytes.
Calculate the disk space that is required by the solutions in a) and b).

2



Exercise 3 (20 pt) Consider the following relation, which stores information about
project assignments:

Emp Proj Salary Period
r0 Joe A 6 [1,6]
r1 Joe B 14 [1,12]
r2 Ron B 30 [4,24]
r3 Ann A 15 [7,18]
r4 Jim A 4 [7,12]
r5 Ann D 3 [10,12]
r6 Lea F 13 [12,24]
r7 Ann F 13 [13,24]
r8 Jim C 8 [13,18]
r9 Max B 7 [18,24]

Show the following index structures and file organisations (assume that the tuples
are inserted in the order r0, r1, . . . ):

a. A primary B+-tree index with n = 3 on Proj together with the data file. Show
the structure after r0, . . . , r4 have been inserted and after all tuples have been
inserted.

b. A secondary index on Emp together with the data file, using index-sequential
file organisation.

c. A static hash file organisation on Salary using hash function h(n) = n mod 4.
Each bucket can hold at most 2 tuples.

Exercise 4 (20 pt) Assume a relation prod(pid, category, price, ...) with
600.000 tuples, where each tuple is 100 Bytes. The product ID pid is a key and is
equally distributed between 1 and 3.000.000. The block size is 2.000 Bytes.

a. Consider a B+-tree index on the product ID pid, where the pid requires 4
Bytes and a pointer requires 6 Bytes; a tree node occupies an entire block.
Determine the minimal and maximal number of blocks used for the tree.

b. Consider the B+-tree from a) with the minimal number of blocks and assume
that it is a primary index. Describe the evaluation of the following queries and
determine the number of IOs (data blocks + index blocks):

Q1:SELECT * FROM prod WHERE pid BETWEEN 10000 AND 20000

Q2:SELECT CNT(*) FROM prod WHERE pid BETWEEN 10000 AND 20000

c. Repeat b) but assume the B+-tree to be a secondary index.

Exercise 5 (10 pt) Consider a relation Grades(Stud,Grade) that contains the fol-
lowing tuples: (Jan, 25), (John, 25), (Ann, 25), (Sue, 18), (Pete, 30), (Sarah, 20),
(Ron, 27), (Julia, 22), (Bob, 18), (Luk, 23), (Tim, 25). Further, assume that only
one tuple fits in a block, and the memory holds at most 3 blocks.

a. Show the runs created on each pass of the sort-merge algorithm, when applied
to sort the Grades relation.

b. What is the total number of block transfers ? Explain your answer.

3



Exercise 6 (10 pt) Assume two relations r(A,B) and s(B,C). Transform the
following relational algebra expression into more efficient ones and motivate your
choice:

a. σ(A=1∨A=3)∧B<C(r 1 s)

b. πB(σC>100(r 1 s))

Exercise 7 (10 pt) Consider the following schedule:

T1 T2

read(A)
write(B)

read(B)

a. Is this schedule possible under the two-phase locking protocol? If yes, add lock
and unlock instructions.

b. Assume the following order on the data items: B → A. Is the schedule possible
under the tree protocol? If yes, add lock and unlock instructions.

c. Suppose that none of the two transactions committed yet (e.g., additional
operations might follow). Is the schedule cascadeless? Explain your answer.
If no, where should a commit be placed in order to make it cascadeless?

4



Solution 1

a. The number of disk accesses

b. Primary index

c. Uniform and random

d. M−2 blocks for the outer relation, 1 block for the inner relation, 1 block for
the output

e. No

f. C = br + bs, where br and bs is the number of blocks of the two relations

g. A single transaction leads to a series of transaction rollbacks

h. Deadlocks

i. No

j. Transaction T needs to be undone if the log contains a 〈T, start〉 record but
not a 〈T, commit〉 record; T needs to be redone if the log contains both a
〈T, start〉 record and a 〈T, commit〉 record.

Solution 2

a. File organization with reserved space method for variable-length records:

0 Jan P1 800 P2 400 P3 500 P4 900
1 Ann P1 250 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
2 Joe P3 350 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

b. File organization with pointer method for variable-length records:

0 Jan P1 800
1 Ann P1 250
2 P2 400
3 P3 500
4 P4 900
5 Joe P3 350

c. Memory requirements:
for a) 1 record = (20 + 4 x 14) = 76 Bytes, total = 3 x 76 = 228 Bytes
for b) 1 record = (20 + 14 + 4) = 38 Bytes, total = 6 x 38 = 228 Bytes

5



Solution 3

a. Primary B+-tree index on Proj

• after reading r0, . . . , r4:

B+-tree index

A B

Data file

Emp Proj Salary Period
Joe A 6 [1,6]
Ann A 15 [7,18]
Jim A 4 [7,12]
Joe B 14 [1,12]
Ron B 30 [4,24]

• after reading all tuples

B+-tree index

C D

A B C D F

Data file

Emp Proj Salary Period
Joe A 6 [1,6]
Ann A 15 [7,18]
Jim A 4 [7,12]
Joe B 14 [1,12]
Ron B 30 [4,24]
Max B 7 [18,24]
Jim C 8 [13,18]
Ann D 3 [10,12]
Lea F 13 [12,24]
Ann F 13 [13,24]

NOTE: For the data file we assume that tuples with identical Proj values are
stored in the same order as in the original file, i.e., a new tuple is always stored
at the end of a sequence of tuples with the same value.

b. Secondary index on Emp (with duplicate index entries)

Index file

Ann

Ann

Ann

Jim

Jim

Joe

Joe

Lea

Max

Ron

Data file

Emp Proj Salary Period
Joe A 6 [1,6]
Joe B 14 [1,12]
Ron B 30 [4,24]
Ann A 15 [7,18]
Jim A 4 [7,12]
Ann D 3 [10,12]
Lea F 13 [12,24]
Ann F 13 [13,24]
Jim C 8 [13,18]
Max B 7 [18,24]

c. Hash file organization

h(4) = 0; h(8) = 0; h(13) = 1; h(6) = 2; h(14) = 2; h(30) = 2; h(3) = 3;
h(7) = 3; h(15) = 3;

Bucket 0:
(Jim, A, 4, [7,12])
(Jim, C, 8, [13,18])

Overflow buckets

Bucket 1:
(Lea, F, 13, [12,24])
(Ann, F, 13, [13,24])

Bucket 2:
(Joe, A, 6, [1,6])
(Joe, B, 14, [1,12])

−→
(Ron, B, 30, [4,24])

Bucket 3:
(Ann, A, 15, [7,18])
(Ann, D, 3, [10,12])

−→
(Max, B, 7, [18,24])

6



Solution 4

a. Minimal number of index blocks when tree nodes are completely filled
⌊2.000/(4 + 6)⌋ = 200 index entries/block
- leaf nodes: ⌈600.000/200⌉ = 3.000 blocks
- level n− 1: ⌈3.000/200⌉ = 15 blocks
- level n− 2: ⌈15/200⌉ = 1 block
⇒ at least 3.016 index blocks are required

Maximal number of index blocks when tree nodes are only half full
⌊1.000/(4 + 6)⌋ = 100 index entries/block
- leaf nodes: ⌈600.000/100⌉ = 6, 000 blocks
- level n− 1: ⌈6.000/100⌉ = 60 blocks
- level n− 2: ⌈60/100⌉ = 1 block
⇒ at most 6.061 index blocks are required

b. Average distance between pid values: 3.000.000/600.000 = 5
⇒ Q1 and Q2 retrieve (20.000− 10.000)/5 = 2.000 tuples on average.

Data tuples/block: ⌈2.000/100⌉ = 20

Q1: Traverse the tree once to get the block of the first matching tuple, then
scan the data blocks for the other tuples.
Block IOs:
– 3 index nodes + ⌈2.000/20⌉ = 100 data blocks ⇒ 103 total IOs

Q2: Traverse the tree once to get the leaf node with the first matching search-
key, then scan the leave nodes for the other matching keys. The data tuples
are not needed to evaluate this query!
Block IOs:
– 3 index nodes + ⌈2.000/200⌉ = 10 index leaf nodes ⇒ 13 IOs

c. Q1: Traverse the tree once to get the leaf node with the first matching search-
key, then follow the leaf nodes for the other matching search-keys. For each
matching search-key, follow the data pointer and retrieve the tuple.
Block IOs:
– 3 + 10 = 13 index nodes (as in Q2 above);
– 2.000 data blocks (in the worst case, when each tuple is on separate block);
⇒ 2.013 IOs in total

Q2: The same as in b.)

7



Solution 5

a. In the following we use only the names to refer to the tuples (note that the
relation shall be sorted on the Stud attribute).

Step 1: Create 4 sorted runs with 3 tuples each:
(Ann, Jan, John), (Pete, Sara, Sue), (Bob, Julia, Ron), (Luk, Tim)

Step 2: Merge pass that merges two runs into one run. Thus the number of
runs decreases by the factor of 2:
(Ann, Jan, John, Pete, Sara, Sue), (Bob, Julia, Luk, Ron, Tim)

Step 3: The runs after the second merge pass are:
(Ann, Bob, Jan, John, Julia, Luk, Pete, Ron, Sara, Sue, Tim)

b. Step 1: 11 x 2 = 22 block transfers (read and write)
Step 2: 11 x 2 = 22 block transfers (read and write)
Step 3: 11 x 1 = 11 block transfers (only read)
⇒ 55 block transfers

Solution 6

a. σ(A=1∨A=3)∧B<C(r 1 s):
– Push condition A = 1 ∨A = 3 down to r
– Push condition B < C down to s
– Both transformations reduce the arguments of the join
– Thus, we get σA=1∨A=3(r) 1 σB<C(s)
– An additional optimization might be to split the OR condition and replace
it by a union: (σA=1(r) ∪ σA=3(r)) 1 σB<C(s)

b. πB(σC>100(r 1 s)):
– Push down σC>100 to s followed by a projection to B
– Project r to attribute B
– Both operations reduce the argument relations of the join: the selection
reduces the number of tuples, the projection reduces the size (in terms of
blocks)
– Thus, we get πB(r) 1 πB(σC>100(s))
– Note that the join is needed, since there might be B-values in s that are not
in r

8



Solution 7

a. Yes, it is possible under the two-phase locking protocol.

T1 T2

1 lock-S(A)
2 read(A)
3 lock-X(B)
4 write(B)
5 unlock(B)
6 lock-S(B)
7 read(B)
8 unlock(A)
9 unlock(B)

b. No, not possible under the tree protocol with the order B → A (since in T1

the first lock is on A, which does not allow to lock B later on).

c. No, the schedule is not cascadeless. If T2 aborts, T1 must be rolled back, since
it uses a value of B that has been previously written by T2.

In order to make the schedule cascadeless, a commit must be placed immedi-
ately after write(B) in T2.

9


