# Database Management Systems Written Exam

08.09.2010

| First name     | Last name |  |
|----------------|-----------|--|
| Student number | Signature |  |

# **Instructions for Students**

- Write your name, student number, and signature on the exam sheet and on every solution sheet you hand in.
- This is a closed book exam: the only resources allowed are blank paper, pens, and your head. Use a pen, not a pencil.
- Write neatly and clearly. The clarity of your explanations affects your grade.
- You have 2 hours for the exam.

Good luck!

# Reserved for the Teacher

| Exercise | Max. points | Points |
|----------|-------------|--------|
| 1        | 20          |        |
| 2        | 8           |        |
| 3        | 12          |        |
| 4        | 8           |        |
| 5        | 20          |        |
| 6        | 12          |        |
| 7        | 8           |        |
| 8        | 12          |        |
| Total    | 100         |        |

Exercise 1 (20 pt) Answer the following questions:

- a. What is minimized by disk-arm-scheduling algorithms, such as the elevator algorithm?
- b. What is the difference between a dense and a sparse index?
- c. Can bucket overflow be avoided in hashing?
- d. Assume  $M \geq 3$  main memory blocks. How many blocks shall be used for the outer relation in a (block) nested loop join?
- e. Which strategy for the evaluation of complex expression is more efficient: materialization or pipelining?
- f. Is  $E_1 \bowtie_{\theta} E_2 = E_2 \bowtie_{\theta} E_1$  a correct equivalence rule (for query optimization)?
- g. Describe the A property of the ACID properties?
- h. Is the following statement correct: Every view serializable schedule is also conflict serializable?
- i. What is stored in the lock table?
- j. For log-based recovery with deferred DB modifications: What actions are performed if a transaction is rolled back?

Exercise 2 (8 pt) Consider the following file of variable-length records that stores the exams relation of exercise 4 by using the byte string representation.

| $r_0$ | Jan | AI  | С | 3 | DB  | A | 2 | DMS | В | 2 | $\perp$ |
|-------|-----|-----|---|---|-----|---|---|-----|---|---|---------|
| $r_1$ | Ann | AI  | A | 3 | CSA | D | 1 |     |   |   |         |
| $r_2$ | Bob | OS  | С | 1 | DB  | С | 2 |     |   |   |         |
| $r_3$ | Sue | DMS | A | 2 | ITP | A | 1 |     |   |   |         |
| $r_4$ | Joe | DMS | В | 2 | Т   |   |   |     | • |   |         |

- a. Show the file structure with fixed-length representation with reserved space.
- b. Show the file structure with fixed-length representation with pointers and anchor and overflow block.

Exercise 3 (12 pt) Consider a B<sup>+</sup>-tree, where at most 4 pointers fit into a single node.

a. The following is an incomplete  $B^+$ -tree for the keys  $\{10, 20, 30, 40, 50, 60\}$ . Complete the tree.



- b. Insert 25 and 18 (in that order). Show the resulting tree.
- c. Delete 30. Show the resulting tree.

Exercise 4 (8 pt) Consider the following relation exams:

|   | Name | Course | Grade        | Year |
|---|------|--------|--------------|------|
| 0 | Jan  | AI     | С            | 3    |
| 1 | Jan  | DB     | A            | 2    |
| 2 | Jan  | DMS    | В            | 2    |
| 3 | Ann  | AI     | A            | 3    |
| 4 | Ann  | CSA    | D            | 1    |
| 5 | Bob  | os     | $\mathbf{C}$ | 1    |
| 6 | Bob  | DB     | $\mathbf{C}$ | 2    |
| 7 | Sue  | DMS    | A            | 2    |
| 8 | Sue  | ITP    | A            | 1    |
| 9 | Joe  | DMS    | В            | 2    |

- a. Create a bitmap index over the two attributes which are most suitable for such an index. Explain your choice.
- b. Describe the evaluation of  $\sigma_{Course=DMS \land Grade=A \land Year=2}(exams)$  using the index.

**Exercise 5** (20 pt) Consider a relation r(A, B) with a primary B<sup>+</sup> tree index on attribute A and the following characteristics: |r| = 4,000,000; 100 index entries per block; 20 data tuples per block; the values of both attributes A and B are uniformly distributed in the range [1 - 10,000,000]; A forms a key; seek time = 0.016 sec; latency = 0.008 sec; transfer time = 0.001 sec.

- a. Determine the number of blocks (= number of nodes) used for the  $B^+$ -tree if index blocks are filled up to 80%.
- b. Describe the evaluation and determine the number of block IOs (distinguishing between index blocks and data blocks) for the following queries:
  - Q1:  $\sigma_{A>2Mio \land A<4Mio}(r)$
  - Q2:  $\sigma_{A<2Mio \vee A>4Mio}(r)$
  - Q3:  $\sigma_{A=5Mio \land B>5Mio}(r)$
  - Q4:  $\sigma_{A>5Mio \vee B>5Mio}(r)$
- c. Determine the execution time for the queries in b.)

Exercise 6 (12 pt) Let relations r(A, B) and s(A, C) have the following properties: r has 10,000 tuples and 5 tuples of r fit into one block; s has 125 tuples and 10 tuples of s fit into one block. In relation r we have a hash index on attribute A, where 100 (search-key,pointer)-pairs fit into one bucket. Furthermore, the A-values in r are equally distributed over the A-values in s, and 20 blocks fit into main memory. Compute the cost of the following evaluation plans for  $r \bowtie s$ :

- a. Plan p1: Nested loop with r as outer loop
- b. Plan p2: Hash join
- c. Plan p3: Merge join (assume r and s are already sorted)

**Exercise 7** (8 pt) Assume two relations r(A, C) and s(B, D) and the following relational algebra expression:

$$\sigma_{A<10\land B>100\land A+B<200}(r\times s)$$

- a. Transform this selection statement into a more efficient expression by applying some equivalence rules. Explain your choice and why the new expression is more efficient.
- b. Assume that you can create one single-attribute index on either relation r or s to improve the evaluation of the expression obtained in a.). Which index (type, relation, attribute) would you create? Motivate your choice and briefly describe the evaluation strategy with this index.

**Exercise 8** (12 pt) Given is the following schedule that involves transactions  $T_1$  and  $T_2$ :

|   | $T_1$    | $T_2$   |
|---|----------|---------|
| 1 | read(A)  |         |
| 2 | write(A) |         |
| 3 |          | read(A) |
| 4 |          | read(B) |
| 5 | read(B)  |         |
| 6 | write(B) |         |

Answer the following questions and explain your answers:

- a. Draw the conflict graph and show whether the schedule is conflict serializable or not?
- b. Is the schedule recoverable if both transactions commit immediately after the last operation?
- c. Is the schedule possible under the timestamp protocol?

#### Solution 1

- a. The disk-arm movement.
- b. A dense index has an index record for every search-key value. A sparse index has an index record only for some search-key values.
- c. No.
- d. M 2
- e. Pipelining.
- f. Yes.
- g. Atomicity: A transaction's changes to the state of a DB are atomic, i.e., either all operations of a transaction are properly reflected in the DB or none are.
- h. No.
- i. Granted locks and pending requests for locks.
- j. No actions need to be done.

## Solution 2

a. Fixed-length representation with reserved space

| 0 | Jan | AI  | С | 3 | DB  | A | 2       | DMS | В       | 2 |
|---|-----|-----|---|---|-----|---|---------|-----|---------|---|
| 1 | Ann | AI  | A | 3 | CSA | D | 1       | Т   | $\perp$ |   |
| 2 | Bob | OS  | С | 1 | DB  | С | 2       | Т   | $\perp$ |   |
| 3 | Sue | DMS | A | 2 | ITP | A | 1       | Т   |         |   |
| 4 | Joe | DMS | В | 2 | Τ   | T | $\perp$ | Т   | $\perp$ |   |

b. Fixed-length representation with pointers ( $\uparrow x$  denotes a pointer to record x)



#### Solution 3

a.



b.



c.



## Solution 4

a. *Grade* and *Year* are the most suitable attributes for a bitmap index, since they have the smallest number of different values keeping the index as small as possible.

Grade A: [0 1 0 1 0 0 0 1 1 0]
Grade B: [0 0 1 0 0 0 0 0 0 1]
Grade C: [1 0 0 0 0 0 1 1 0 0 0]

Year 1: [0 0 0 0 0 0 0 0 1 0] Year 2: [0 1 1 0 1 1 1 1 0 1] Year 3: [1 0 0 1 0 0 0 0 0 0 0]

b. Take the bitmap vector of Grade A and Year 2 and compute the logical AND:

[0 1 0 1 0 0 0 1 1 0] AND

[0 1 1 0 1 1 1 1 0 1]

[0 1 0 0 0 0 0 1 0 0]

Retrieve the tuple(s) with a '1' in the resulting bitmap vector, i.e., tuple no. 1 and tuple no. 7, and then select those tuples that have Course=DMS, i.e., (Sue, DMS, A, 2).

#### Solution 5

a. Index blocks:

0.8 \* 100 = 80 index entries per block

Index blocks required at each level:

- level 4: [4,000,000/80] = 50,000 blocks (leaf nodes)
- level 3: [50,000/80] = 625 blocks
- level 2:  $\lceil 625/80 \rceil = 8$  blocks
- level 1: [8/80] = 1 block
- $\Rightarrow$  50,634 index blocks are needed in total

b. Total number of data blocks: [4,000,000/20] = 200,000

Q1: Use index to locate the first tuple with A>2 Mio, then scan the data relation sequentially.

4 index blocks (one at each level)

```
40,000 data blocks (= 20% of the data blocks)

\Rightarrow 4 + 40,000 = 40,004 blocks in total
```

Q2: Scan data relation from the beginning until  $A \geq 2Mio$ ; then use index to locate the first tuple with A > 4 Mio and scan the data relation sequentially from that point.

Condition A < 2 Mio: 40,000 data blocks

Condition A > 4 Mio: 4 index blocks + 120,000 data blocks = 120,004 blocks  $\Rightarrow$  160,004 blocks in total

Q3: Use the index to find the tuple (if there is one) with A=5 Mio and check this tuple for the second condition, B>5 Mio.

4 index blocks (one at each level); 1 data block

 $\Rightarrow 4 + 1 = 5$  blocks in total

Q4: Scan all data blocks; index is not useful.

 $\Rightarrow$  200,000 data blocks in total

c. Execution time: 1 IO = 0.016 + 0.008s + 0.001s = 0.025s

Q1:  $40,004 \times 0.025s = 1,000.1s$ 

Q2:  $160,004 \times 0.025s = 40,000.1s$ 

Q3:  $5 \times 0.025s = 0.125s$ 

Q4:  $200,000 \times 0.025s = 5,000s$ 

# Solution 6

Blocks required for r:  $\lceil 10,000/5 \rceil = 2,000$  blocks Blocks required for s:  $\lceil 125/10 \rceil = 13$  blocks

- a. Plan p1:  $cost(p1) = n_r * b_s + b_r = 10,000 * 13 + 2,000 = 132,000$  block transfers
- b. Plan p2:  $cost(p3) = 3 * (b_r + b_s) = 3 * (2,000 + 13) = 6,039$
- c. Plan p3:  $cost(p4) = b_r + b_s = 2,000 + 13 = 2,013$

### Solution 7

a. First, since condition A < 10 refers only to relation r, it can be pushed down to r. Similar, B > 100 can be pushed down to s, and we get  $\sigma_{A+B<200}(\sigma_{A<10}(r) \times \sigma_{B>100}(s))$ , which produces a smaller Cartesian product.

Second, the condition A + B < 200 can be pushed down to transform the Cartesian product into a join. The final expression is then:  $\sigma_{A<10}(r) \bowtie_{A+B<200} \sigma_{B>100}(s)$ 

b. Create an ordered index on attribute B of relation s. The index can then be used to locate the first tuple with B > 100 and then continue to scan the relation. For the condition on relation r is not useful, since the relation is anyway scanned from the beginning.

## Solution 8

a. No. For both possible serial schedules,  $\langle T_1, T_2 \rangle$  and  $\langle T_2, T_1 \rangle$ , we get either a conflict with write(A) - read(A) or with write(B) - read(B).

- b. No.  $T_1$  might fail after  $T_2$  already committed (and  $T_2$  used A which was produced by  $T_1$ ).
- c. No. Assume  $ts(T_1) = 1$  and  $ts(T_2) = 2$ . Then  $T_2$  sets the read timestamp of B to R ts(B) = 2. When  $T_1$  wants to write B, we have  $ts(T_1) < R ts(B)$ , thus the write operation is rejected and  $T_1$  is rolled back. If  $ts(T_2) = 1$  and  $ts(T_1) = 2$  the same situation appears with the data item A.