
Database Management Systems

Written Exam

25.06.2010

First name Last name

Student number Signature

Instructions for Students

• Write your name, student number, and signature on the exam sheet and on
every solution sheet you hand in.

• This is a closed book exam: the only resources allowed are blank paper, pens,
and your head. Use a pen, not a pencil.

• Write neatly and clearly. The clarity of your explanations affects your grade.

• You have 2 hours for the exam.

Good luck!

Reserved for the Teacher

Exercise Max. points Points

1 20
2 8
3 20
4 24
5 8
6 8
7 12

Total 100

1

Exercise 1 (20 pt) Answer the following questions:

a. What is a pinned block?

b. For which operaton is a clustering file organisation advantageous?

c. In a multilevel index, what is indexed by the outer index?

d. Describe a uniform hash function for a search-key value with range [1, 1000]
and 20 buckets.

e. What are two index structures that can efficiently handle multiple-key queries?

f. What is always applicable: materialized evaluation or pipelined evaluation?

g. How many different join orders exist for r1 1 r2 1 r3?

h. What are the 3 steps of query processing?

i. What is a cascading rollback?

j. What is the main idea of multiversion concurrency protocols to increase con-
currency?

Exercise 2 (8 pt) Consider the following file organization using fixed-length records
and a free list.

header
record 0 BMW 1990 red 10
record 1
record 2 BMW 1991 red 2
record 3 Fiat 1990 white 3
record 4
record 5 Fiat 1991 blue 3
record 6
record 7 Ford 1990 blue 1

Show the structure of the file after each of the following operations (in that order):

a. Insert(BMW,1991,blue,6)

b. Delete(record 2)

c. Insert(Ford,1990,white,7)

2

Exercise 3 (20 pt) Consider the following relation r:

Name Course Grade

r0 Tom ITP 30
r1 Tom DMS 21
r2 Aron CSA 18
r3 Ann OS 18
r4 Ann DMS 25
r5 Nick ITP 27
r6 Nick DSA 23
r7 Nick IDB 26
r8 Sue ITP 28
r9 Sue CSA 19

Show the following index structures and file organisations:

a. A primary dense B+-tree index on Course. Assume n = 3 for the B+-tree.
The tuples are inserted in the order r0, . . . , r9. Show the tree after inserting
the first five tuples and after inserting all tuples.

b. An extensible hash table on Grade with the hash function h(n) = n mod 8.
Each bucket holds at most 2 tuples. The tuples are inserted in the order
r0, . . . , r9. Show the structure after inserting the first five tuples and after
inserting all tuples.

c. Assume that you have a B+-tree index on Course and a (separate) B+-tree
index on Grade. Then consider the following query:

SELECT * FROM r WHERE Course = ’ITP’ AND Grade = 30

Describe 3 different evaluation strategies for this query that take advantage of
the indexes, using one of the indexes or both.

Exercise 4 (24 pt) Let r(A, B) and s(A, C) be two relations with the following
characteristics: |r| = 45.000, |s| = 20.000, A is primary key in both relations and
equally distributed between 1 and 1.000.000, and s has a primary B+-tree index on
attribute A with 100 search-key/pointer pairs per node. A single block can contain
25 tuples of r, 30 tuples of s, or 1 node of the index.

a. Determine the number of blocks needed for r, s, and the index, respectively.

b. Determine the access strategy and determine the number of block IOs for the
following selection queries:

• σA=100.000(s)

• σA<100.000(s)

• σA>100.000(s)

c. Determine the number of block IOs for the following evaluation plans for r 1 s
when 3 buffer blocks in memory are available:

• Plan p1: Block nested loop join

• Indexed nested loop join using the index in a)

• Plan p3: Hash join

d. For the hash join in plan p3 above a partition of s need to fit entirely in main
memory. Assume a main memory buffer size of 12 blocks. How should the
buffer blocks be used and what would be a useful hash function such that the
number of s-partitions is minimal, i.e., the partitions are maximal. (Assume
that the A-values are perfectly distributed)

3

Exercise 5 (8 pt) Proof that the following expressions do not hold:

a. σθ(E1 ∪ E2) = σθ(E1) ∪ E2

b. πA(E1 − E2) = πA(E1)− πA(E2)

Exercise 6 (8 pt) Given is the following schedule over transactions T1, T2, T3:

T1 T2 T3

read(Z)
read(Y)
write(Y)

read(Y)
read(Z)

read(X)
write(X)

write(Y)
write(Z)

read(X)
read(Y)
write(Y)

write(X)

Answer the following questions and explain your answers:

a. Draw the conflict graph of this schedule and show whether the schedule is
conflict serializable or not.

b. Is the schedule view serializable to 〈T1, T2, T3〉?

Exercise 7 (12 pt) Consider the following two transactions:
T1: read(A);

read(B);
if A=0 then B := B + 1;
write(B).

T2: read(B);
read(A);
if B=0 then A := A + 1;
write(A).

a. Add lock and unlock instructions to T1 and T2 so that they observe the two-
phase locking protocol.

b. Show a concurrent schedule of T1 and T2 that results in a deadlock? Show also
the evolution of the wait-for graph.

c. For the schedule in b.) what happens under the wait-die deadlock prevention
protocol?

4

Solution 1

a. Memory block that is not allowed to be written back to disk as long as it is
pinned.

b. Join

c. The inner (primary) index

d. h = n mod 20

e. Bitmap index, grid file index

f. Materialized evaluation

g. 12

h. Parsing/translation, optimization, evaluation

i. A single transaction failure leads to a series of transaction rollbacks

j. Keep old versions of data items such that reads are always successful

Solution 2

a. Insert(BMW,1991,blue,6)

header
record 0 BMW 1990 red 10
record 1 BMW 1991 blue 6
record 2 BMW 1991 red 2
record 3 Fiat 1990 white 3
record 4
record 5 Fiat 1991 blue 3
record 6
record 7 Ford 1990 blue 1

b. Delete(record 2)

header
record 0 BMW 1990 red 10
record 1 BMW 1991 blue 6
record 2
record 3 Fiat 1990 white 3
record 4
record 5 Fiat 1991 blue 3
record 6
record 7 Ford 1990 blue 1

c. Insert(Ford,1990,white,7)

header
record 0 BMW 1990 red 10
record 1 BMW 1991 blue 6
record 2 Ford 1990 white 7
record 3 Fiat 1990 white 3
record 4
record 5 Fiat 1991 blue 3
record 6
record 7 Ford 1990 blue 1

5

Solution 3

a. B+-tree index

– after inserting r0, . . . , r4:

CSA DMS ITP OS

ITP

– after inserting all tuples:

CSA DMS ITP OS

DSA ITP

IDBDSA

b. Extensible hash file organization:

• The hash function gives:
h(18) = 010, h(19) = 011, h(21) = 101, h(23) = 111, h(25) = 001,
h(26) = 010, h(27) = 011, h(28) = 100, h(30) = 110

• Overflow buckets are used, if a bucket is already full.

– after inserting r0, . . . , r4:

(Ann,DMS,25)

(Tom,ITP,30), (Tom,DMS,21)

(Aron,CSA,18), (Ann,OS,18)

2
2

2

1

00

01

10

11

Bucket address table

Prefix

Buckets

– after inserting all tuples:

(Ann,DMS,21), (Sue,ITP,28)

(Nick,ITP,27), (Sue,CSA,19)

(Ann,DMS,25)

(Aron,CSA,18), (Ann,OS,18) (Nick,IDB,26)

(Tom,ITP,30), (Nick,DSA,23)

3

111

110

101

100

011

010

001

000

Prefix

2

2

3

3

Bucket address table Buckets Overflow buckets

2

c. The 3 evaluation strategies are:

1. Use index on Course to find all tuples with Course = ’ITA’; then test for
Grade = 30.

2. Use index on Grade to find all tuples with Grade = 30; then test for
Course = ’ITA’.

3. Use index on Course to find pointers to all records with a Course = ’ITA’.
Similarly, use index on Grade to find pointers to all records with a Grade

= 30. Take the intersection of the two pointer sets.

6

Solution 4

a. Data blocks for r: br = ⌈45.000/25⌉ = 1.800 blocks
Data blocks for s: bs = ⌈20.000/30⌉ = 667 blocks
Index on s:
– level 3: ⌈20.000/100⌉ = 200 nodes
– level 2: ⌈200/100⌉ = 2 nodes
– level 1: ⌈2/100⌉ = 1 node
Total for index: 203 blocks

b. σA=100.000(s):
– Traverse the B+-tree to locate the matching tuple
– 3 index block IOs + 1 data block IO = 4 block IOs
σA<100.000(s):
– Scan the data file from the beginning; the index is not needed.
– Avg. distance between A-values: 1.000.000/20.000 = 50
– Tuples that match the selection predicate: 100.000/50 = 2.000
– Thus, ⌈2.000/30⌉ = 67 data block IOs
σA>100.000(s):
– Traverse the B+-tree to locate the first matching tuple: 3 index blocks
– Scan the data file sequentially from that tuple
– Avg. distance between A-values: 1.000.000/20.000 = 50
– Tuples that match the selection predicate: 900.000/50 = 18.000
– Thus, ⌈18.000/30⌉ = 600 data block IOs
– Total block IOs: 3 + 600 = 603

c. Plan p1: Block nested loop join (with r as outer relation):
– C = br ∗ bs + br = 1.800 ∗ 667 + 1.800 = 1.202.400
Plan p2: Indexed nested loop join:
– Use the index to access matching tuples in s
– Cost c to access a matching tuple: c = 3 + 1 = 4 block IOs
– Cost for p2: C = nr ∗ c + br = 45.000 ∗ 4 + 1.800 = 181.800
Plan p3: Hash join (partially filled blocks are ignored):
– C = 3 ∗ (br + bs) = 3 ∗ (1.800 + 667) = 7.401

d. – Use 1 block for the result, 1 block for r-partitions, 10 blocks for s-partitions
– An s-partition can hold at most 30 ∗ 10 = 300 tuples
– Avg. distance between A-values in s: ⌈1.000.000/20.000⌉ = 50
– The range of A-values that fit in a partition is 300 ∗ 50 = 15.000
– A hash function that assigns 1.500 tuples to a partition: h = A div 15.000

7

Solution 5

a. Proof by counter-example: Assume (for E1 and E2) two relations with schema
(A, B) and instances E1 = {(a, 1)} and E2 = {(b, 1)}, and let θ be the condi-
tion A =′ a′.
Then on the right-hand side we get E1 ∪ E2 = {(a, 1), (b, 1)} and σA=′a′(E1 ∪
E2) = {(a, 1)}.
On the left-hand side we get σA=′a′(E1) ∪ E2 = {(a, 1)} ∪ {(b, 1)} =
{(a, 1), (b, 1)}, which is different from the result of the left-hand side.

b. Proof by counter-example: Assume (for E1 and E2) two relations with schema
(A, B) and instances E1 = {(1, 2), (1, 5)} and E2 = {(1, 2)}. The left-hand
side is empty, whereas the right-hand side gives (1).

Solution 6

a. Conflict graph:

The schedule is not conflict serializable, since the conflict graph contains cycles.

b. No.
Example of violating a condition for view serializability: In the concurrent
schedule, T2 reads the initial value of Y ; in 〈T1, T2, T3〉, transaction T2 reads
the value of Y which is produced by T1 (but should read the initial value).

Solution 7

a. Lock and unlock instructions:
T1: lock-S(A);

read(A);
lock-X(B);
read(B);
if A=0 then B := B + 1;
write(B).
unlock(A);
unlock(B);

T2: lock-S(B);
read(B);
lock-X(A);
read(A);
if B=0 then A := A + 1;
write(A).
unlock(B);
unlock(A);

b. The following schedule results in a deadlock at step 6:

T1 T2 Wait-for graph
1 lock-S(A);
2 lock-S(B);
3 read(B);
4 read(A)
5 lock-X(B) T1 −→ T2 (T1 waits for T2)

6 lock-X(B); T1
−→←− T2 (T1 waits for T2 and vice versa)

c. Wait-die deadlock prevention protocol: We assume that T1 is the older trans-
action and T2 is the younger transaction. Then at step 6, T2 (the younger
transaction) will not wait for T1 (the older transaction) to release the lock.
Instead, T2 is rolled back, and the lock on B is released. T1 can now continue.

8

