Database Management Systems Written Exam

25.06.2010

First name		Last name	
Student number		Signature	

Instructions for Students

- Write your name, student number, and signature on the exam sheet and on every solution sheet you hand in.
- This is a closed book exam: the only resources allowed are blank paper, pens, and your head. Use a pen, not a pencil.
- Write neatly and clearly. The clarity of your explanations affects your grade.
- You have 2 hours for the exam.

Good luck!

Reserved for the Teacher

Exercise	Max. points	Points
1	20	
2	8	
3	20	
4	24	
5	8	
6	8	
7	12	
Total	100	

Exercise 1 (20 pt) Answer the following questions:
a. What is a pinned block?
b. For which operaton is a clustering file organisation advantageous?
c. In a multilevel index, what is indexed by the outer index?
d. Describe a uniform hash function for a search-key value with range $[1,1000]$ and 20 buckets.
e. What are two index structures that can efficiently handle multiple-key queries?
f. What is always applicable: materialized evaluation or pipelined evaluation?
g. How many different join orders exist for $r_{1} \bowtie r_{2} \bowtie r_{3}$?
h. What are the 3 steps of query processing?
i. What is a cascading rollback?
j. What is the main idea of multiversion concurrency protocols to increase concurrency?

Exercise 2 (8 pt) Consider the following file organization using fixed-length records and a free list.

header					
record 0	BMW	1990	red	10	
record 1					5
record 2	BMW	1991	red	2	
record 3	Fiat	1990	white	3	
record 4					4
record 5	Fiat	1991	blue	3	
record 6					\leftarrow
record 7	Ford	1990	blue	1	

Show the structure of the file after each of the following operations (in that order):
a. Insert(BMW,1991,blue,6)
b. Delete(record 2)
c. Insert(Ford,1990,white, 7)

Exercise 3 (20 pt) Consider the following relation r :

	Name	Course	Grade
r_{0}	Tom	ITP	30
r_{1}	Tom	DMS	21
r_{2}	Aron	CSA	18
r_{3}	Ann	OS	18
r_{4}	Ann	DMS	25
r_{5}	Nick	ITP	27
r_{6}	Nick	DSA	23
r_{7}	Nick	IDB	26
r_{8}	Sue	ITP	28
r_{9}	Sue	CSA	19

Show the following index structures and file organisations:
a. A primary dense B^{+}-tree index on Course. Assume $n=3$ for the B^{+}-tree. The tuples are inserted in the order r_{0}, \ldots, r_{9}. Show the tree after inserting the first five tuples and after inserting all tuples.
b. An extensible hash table on Grade with the hash function $h(n)=n \bmod 8$. Each bucket holds at most 2 tuples. The tuples are inserted in the order r_{0}, \ldots, r_{9}. Show the structure after inserting the first five tuples and after inserting all tuples.
c. Assume that you have a B^{+}-tree index on Course and a (separate) B^{+}-tree index on Grade. Then consider the following query:
SELECT * FROM r WHERE Course $=$ 'ITP' AND Grade $=30$
Describe 3 different evaluation strategies for this query that take advantage of the indexes, using one of the indexes or both.

Exercise 4 (24 pt) Let $r(A, B)$ and $s(A, C)$ be two relations with the following characteristics: $|r|=45.000,|s|=20.000, A$ is primary key in both relations and equally distributed between 1 and 1.000 .000 , and s has a primary B^{+}-tree index on attribute A with 100 search-key/pointer pairs per node. A single block can contain 25 tuples of $r, 30$ tuples of s, or 1 node of the index.
a. Determine the number of blocks needed for r, s, and the index, respectively.
b. Determine the access strategy and determine the number of block IOs for the following selection queries:

- $\sigma_{A=100.000}(s)$
- $\sigma_{A<100.000}(s)$
- $\sigma_{A>100.000}(s)$
c. Determine the number of block IOs for the following evaluation plans for $r \bowtie s$ when 3 buffer blocks in memory are available:
- Plan p1: Block nested loop join
- Indexed nested loop join using the index in a)
- Plan p3: Hash join
d. For the hash join in plan p 3 above a partition of s need to fit entirely in main memory. Assume a main memory buffer size of 12 blocks. How should the buffer blocks be used and what would be a useful hash function such that the number of s-partitions is minimal, i.e., the partitions are maximal. (Assume that the A-values are perfectly distributed)

Exercise 5 (8 pt) Proof that the following expressions do not hold:
a. $\sigma_{\theta}\left(E_{1} \cup E_{2}\right)=\sigma_{\theta}\left(E_{1}\right) \cup E_{2}$
b. $\pi_{A}\left(E_{1}-E_{2}\right)=\pi_{A}\left(E_{1}\right)-\pi_{A}\left(E_{2}\right)$

Exercise 6 (8 pt) Given is the following schedule over transactions T_{1}, T_{2}, T_{3} :

T_{1}	T_{2}	T_{3}
	$\begin{aligned} & \operatorname{read}(\mathrm{Z}) \\ & \operatorname{read}(\mathrm{Y}) \\ & \operatorname{write}(\mathrm{Y}) \end{aligned}$	
$\begin{aligned} & \operatorname{read}(\mathrm{X}) \\ & \text { write(X) } \end{aligned}$		$\operatorname{read}(\mathrm{Y})$ $\operatorname{read}(\mathrm{Z})$
	$\operatorname{read}(\mathrm{X})$	$\begin{aligned} & \text { write(Y) } \\ & \text { write(Z) } \end{aligned}$
$\begin{aligned} & \text { read(Y) } \\ & \text { write(Y) } \end{aligned}$	write(X)	

Answer the following questions and explain your answers:
a. Draw the conflict graph of this schedule and show whether the schedule is conflict serializable or not.
b. Is the schedule view serializable to $\left\langle T_{1}, T_{2}, T_{3}\right\rangle$?

Exercise 7 (12 pt) Consider the following two transactions:
$T_{1}: \quad r e a d(A) ;$
$\operatorname{read}(\mathrm{B})$;
if $\mathrm{A}=0$ then $\mathrm{B}:=\mathrm{B}+1$;
write(B).
$T_{2}: \quad \operatorname{read}(\mathrm{B}) ;$
$\operatorname{read}(\mathrm{A})$;
if $\mathrm{B}=0$ then $\mathrm{A}:=\mathrm{A}+1$;
write(A).
a. Add lock and unlock instructions to T_{1} and T_{2} so that they observe the twophase locking protocol.
b. Show a concurrent schedule of T_{1} and T_{2} that results in a deadlock? Show also the evolution of the wait-for graph.
c. For the schedule in b.) what happens under the wait-die deadlock prevention protocol?

Solution 1

a. Memory block that is not allowed to be written back to disk as long as it is pinned.
b. Join
c. The inner (primary) index
d. $h=n \bmod 20$
e. Bitmap index, grid file index
f. Materialized evaluation
g. 12
h. Parsing/translation, optimization, evaluation
i. A single transaction failure leads to a series of transaction rollbacks
j. Keep old versions of data items such that reads are always successful

Solution 2

a. Insert(BMW,1991,blue,6)

header					
record 0	BMW	1990	red	10	
record 1	BMW	1991	blue	6	
record 2	BMW	1991	red	2	
record 3	Fiat	1990	white	3	
record 4					\checkmark
record 5	Fiat	1991	blue	3	
record 6					\leftarrow
record 7	Ford	1990	blue	1	

b. Delete(record 2)

header					
record 0	BMW	1990	red	10	
record 1	BMW	1991	blue	6	
record 2					\checkmark
record 3	Fiat	1990	white	3	
record 4					5
record 5	Fiat	1991	blue	3	
record 6					\leftarrow
record 7	Ford	1990	blue	1	

c. Insert(Ford,1990,white,7)

header					
cord 0	BMW	1990	red	10	
cord 1	BMW	1991	blue	6	
cord 2	Ford	1990	white	7	
cord 3	Fiat	1990	white	3	
cord 4					
cord 5	Fiat	1991	blue	3	
ecord 6					
record 7	Ford	1990	blue	1	

Solution 3

a. B^{+}-tree index

- after inserting r_{0}, \ldots, r_{4} :

- after inserting all tuples:

b. Extensible hash file organization:
- The hash function gives:

$$
\begin{aligned}
& h(18)=010, h(19)=011, h(21)=101, h(23)=111, h(25)=001 \\
& h(26)=010, h(27)=011, h(28)=100, h(30)=110
\end{aligned}
$$

- Overflow buckets are used, if a bucket is already full.
- after inserting r_{0}, \ldots, r_{4} :

- after inserting all tuples:

c. The 3 evaluation strategies are:

1. Use index on Course to find all tuples with Course = 'ITA'; then test for Grade $=30$.
2. Use index on Grade to find all tuples with Grade $=30$; then test for Course $=$ 'ITA'.
3. Use index on Course to find pointers to all records with a Course $=$ 'ITA'. Similarly, use index on Grade to find pointers to all records with a Grade $=30$. Take the intersection of the two pointer sets.

Solution 4

a. Data blocks for $r: b_{r}=\lceil 45.000 / 25\rceil=1.800$ blocks

Data blocks for $s: b_{s}=\lceil 20.000 / 30\rceil=667$ blocks
Index on s :

- level 3: $\lceil 20.000 / 100\rceil=200$ nodes
- level 2: $\lceil 200 / 100\rceil=2$ nodes
- level 1: $\lceil 2 / 100\rceil=1$ node

Total for index: 203 blocks
b. $\sigma_{A=100.000}(s)$:

- Traverse the B^{+}-tree to locate the matching tuple
-3 index block IOs +1 data block $\mathrm{IO}=4$ block IOs
$\sigma_{A<100.000}(s)$:
- Scan the data file from the beginning; the index is not needed.
- Avg. distance between A-values: $1.000 .000 / 20.000=50$
- Tuples that match the selection predicate: $100.000 / 50=2.000$
- Thus, $\lceil 2.000 / 30\rceil=67$ data block IOs
$\sigma_{A>100.000}(s):$
- Traverse the B^{+}-tree to locate the first matching tuple: 3 index blocks
- Scan the data file sequentially from that tuple
- Avg. distance between A-values: $1.000 .000 / 20.000=50$
- Tuples that match the selection predicate: $900.000 / 50=18.000$
- Thus, $\lceil 18.000 / 30\rceil=600$ data block IOs
- Total block IOs: $3+600=603$
c. Plan p1: Block nested loop join (with r as outer relation):
$-C=b_{r} * b_{s}+b_{r}=1.800 * 667+1.800=1.202 .400$
Plan p2: Indexed nested loop join:
- Use the index to access matching tuples in s
- Cost c to access a matching tuple: $c=3+1=4$ block IOs
- Cost for p2: $C=n_{r} * c+b_{r}=45.000 * 4+1.800=181.800$

Plan p3: Hash join (partially filled blocks are ignored):
$-C=3 *\left(b_{r}+b_{s}\right)=3 *(1.800+667)=7.401$
d. - Use 1 block for the result, 1 block for r-partitions, 10 blocks for s-partitions

- An s-partition can hold at most $30 * 10=300$ tuples
- Avg. distance between A-values in $s:\lceil 1.000 .000 / 20.000\rceil=50$
- The range of A-values that fit in a partition is $300 * 50=15.000$
- A hash function that assigns 1.500 tuples to a partition: $h=A \operatorname{div} 15.000$

Solution 5

a. Proof by counter-example: Assume (for E_{1} and E_{2}) two relations with schema (A, B) and instances $E_{1}=\{(a, 1)\}$ and $E_{2}=\{(b, 1)\}$, and let θ be the condition $A={ }^{\prime} a^{\prime}$.
Then on the right-hand side we get $E_{1} \cup E_{2}=\{(a, 1),(b, 1)\}$ and $\sigma_{A=^{\prime} a^{\prime}}\left(E_{1} \cup\right.$ $\left.E_{2}\right)=\{(a, 1)\}$.
On the left-hand side we get $\sigma_{A=^{\prime} a^{\prime}}\left(E_{1}\right) \cup E_{2}=\{(a, 1)\} \cup\{(b, 1)\}=$ $\{(a, 1),(b, 1)\}$, which is different from the result of the left-hand side.
b. Proof by counter-example: Assume (for E_{1} and E_{2}) two relations with schema (A, B) and instances $E_{1}=\{(1,2),(1,5)\}$ and $E_{2}=\{(1,2)\}$. The left-hand side is empty, whereas the right-hand side gives (1).

Solution 6

a. Conflict graph:

The schedule is not conflict serializable, since the conflict graph contains cycles.
b. No.

Example of violating a condition for view serializability: In the concurrent schedule, T_{2} reads the initial value of Y; in $\left\langle T_{1}, T_{2}, T_{3}\right\rangle$, transaction T_{2} reads the value of Y which is produced by T_{1} (but should read the initial value).

Solution 7

a. Lock and unlock instructions:

b. The following schedule results in a deadlock at step 6 :

	T_{1}	T_{2}	Wait-for graph
1	lock-S(A);		
2		lock-S(B);	
3		$\operatorname{read}(\mathrm{~B}) ;$	
4	$\operatorname{read}(\mathrm{~A})$		
5	lock-X(B)		$T_{1} \longrightarrow T_{2}\left(T_{1}\right.$ waits for $\left.T_{2}\right)$
6		lock-X(B);	$T_{1} \rightleftarrows T_{2}\left(T_{1}\right.$ waits for T_{2} and vice versa)

c. Wait-die deadlock prevention protocol: We assume that T_{1} is the older transaction and T_{2} is the younger transaction. Then at step $6, T_{2}$ (the younger transaction) will not wait for T_{1} (the older transaction) to release the lock. Instead, T_{2} is rolled back, and the lock on B is released. T_{1} can now continue.

