Approximation: Theory and Algorithms
The q-Gram Distance

Nikolaus Augsten

Free University of Bozen-Bolzano
Faculty of Computer Science
DIS

Unit 3 – March 13, 2009
Outline

1 Motivation

2 Filters for the Edit Distance
 - Lower Bound Filters
 - Length Filter
 - \(q \)-Grams: Count Filter
 - \(q \)-Grams: Position Filtering
 - Experiments

3 The \(q \)-Gram Distance
 - Definition and Properties

4 Conclusion
Scenario:

- A company offers a number of services on the Web.
- You can subscribe for each service independently.
- Each service has its own database (no unique key across databases).

Example: customer tables of two different services:

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>...</th>
<th>ID</th>
<th>name</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1023</td>
<td>Frodo Baggins</td>
<td>...</td>
<td>948483</td>
<td>John R. R. Tolkien</td>
<td>...</td>
</tr>
<tr>
<td>21</td>
<td>J. R. R. Tolkien</td>
<td>...</td>
<td>153494</td>
<td>C. S. Lewis</td>
<td>...</td>
</tr>
<tr>
<td>239</td>
<td>C.S. Lewis</td>
<td>...</td>
<td>494392</td>
<td>Fordo Baggins</td>
<td>...</td>
</tr>
<tr>
<td>863</td>
<td>Bilbo Baggins</td>
<td>...</td>
<td>799294</td>
<td>Biblo Baggins</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Task: Created unified customer view!
Motivation

The **Join Approach**

- **Solution:** Join customer tables on name attribute (Q1):

  ```sql
  SELECT * FROM A,B
  WHERE A.name = B.name
  ```

- **Exact Join:** Does not work!

- **Approximate Join:** Allow k errors...

 1. Register UDF (User Defined Function) for the edit distance:

     ```sql
     levenshtein(x, y)
     ```

 returns the union cost edit distance between the strings x and y.

 2. Rewrite query Q1 as approximate join (Q2):

     ```sql
     SELECT * FROM A,B
     WHERE levenshtein(A.name, B.name) <= k
     ```
Effectiveness and Efficiency of the Approximate Join

Effectiveness: Join result for \(k = 3 \):

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>ID</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1023</td>
<td>Frodo Baggins</td>
<td>494392</td>
<td>Fordo Baggins</td>
</tr>
<tr>
<td>21</td>
<td>J. R. R. Tolkien</td>
<td>948483</td>
<td>John R. R. Tolkien</td>
</tr>
<tr>
<td>239</td>
<td>C.S. Lewis</td>
<td>153494</td>
<td>C. S. Lewis</td>
</tr>
<tr>
<td>863</td>
<td>Bilbo Baggins</td>
<td>799294</td>
<td>Biblo Baggins</td>
</tr>
</tbody>
</table>

⇒ very good (100% correct)

Efficiency: How does the DB evaluate the query?

1. compute \(A \times B \)
2. evaluate UDF on each tuple \(t \in A \times B \)

Experiment [GIJ+01]: Self-join on string table (average string length = 14):

- 1K tuples: ca. 30min
- 14K tuples: > 3 days!

Prohibitive runtime!
Using a Filter for Search Space Reduction

- **Search space**: \(A \times B \) \(\Rightarrow \) \(|A| \cdot |B|\) edit distance computations
- **Filtering (Pruning)**: Remove tuples that cannot match, without actually computing the distance.
Outline

1 Motivation

2 Filters for the Edit Distance
 - Lower Bound Filters
 - Length Filter
 - q-Grams: Count Filter
 - q-Grams: Position Filtering
 - Experiments

3 The q-Gram Distance
 - Definition and Properties

4 Conclusion
Error Types:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Test</th>
<th>Correct Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>positive</td>
<td>true positive</td>
</tr>
<tr>
<td>negative</td>
<td>negative</td>
<td>false negative</td>
</tr>
</tbody>
</table>

Example: “Are x and y within edit distance k?”
- **Correct result**: compute edit distance and test $\text{ed}(x, y) \leq k$
- **Filter test**: give answer without computing edit distance
- **False negatives**: x and y are pruned although $\text{ed}(x, y) \leq k$.
- **False positives**: x and y are not pruned although $\text{ed}(x, y) \ngeq k$.

Good filters have
- no false negatives (i.e., miss no correct results)
- few false positive (i.e., avoid unnecessary distance computations)
Filters for the Edit Distance

Lower Bound Filters

- Lower bound (lb) for distance \(\text{dist}(x, y) \):
 \[
 \text{dist}(x, y) \geq \text{lb}_\text{dist}(x, y)
 \]

- Query Q3 with **Lower Bound Filter**:

  ```
  SELECT * FROM A,B
  WHERE \text{lb}(A.name, B.name) \leq k \text{ AND }
  \text{levenshtein}(A.name, B.name) \leq k
  
  \text{lb}(A.name, B.name) \text{ is a cheap function}
  \text{database will optimize query: compute}
  \text{levenshtein}(A.name, B.name) \text{ only if } \text{lb}(A.name, B.name) > k
  
  \text{No false negatives!}
  ```
Outline

1 Motivation

2 Filters for the Edit Distance
 - Lower Bound Filters
 - Length Filter
 - q-Grams: Count Filter
 - q-Grams: Position Filtering
 - Experiments

3 The q-Gram Distance
 - Definition and Properties

4 Conclusion
Length Filtering

Theorem (Length Filtering [GIJ+01])

If two strings x and y are within edit distance k, their lengths cannot differ by more than k:

$$\text{ed}(x, y) \geq \text{abs}(|x| - |y|)$$

- **Proof:** At least $\text{abs}(|x| - |y|)$ inserts are needed to bring x and y to the same length.

- Query Q4 with **Length Filtering**:

  ```sql
  SELECT * FROM A,B
  WHERE ABS(LENGTH(A.name)-LENGTH(B.name)) <= k AND
  levenshtein(A.name, B.name) <= k
  ```
Example: Length Filtering

Execute query without/with length filter ($k = 3$):

<table>
<thead>
<tr>
<th>ID</th>
<th>A name</th>
<th>ID</th>
<th>B name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1023</td>
<td>Frodo Baggins$_{13}$</td>
<td>948483</td>
<td>John R. R. Tolkien$_{18}$</td>
</tr>
<tr>
<td>21</td>
<td>J. R. R. Tolkien$_{16}$</td>
<td>153494</td>
<td>C. S. Lewis$_{11}$</td>
</tr>
<tr>
<td>239</td>
<td>C.S. Lewis$_{10}$</td>
<td>494392</td>
<td>Fordo Baggins$_{13}$</td>
</tr>
<tr>
<td>863</td>
<td>Bilbo Baggins$_{13}$</td>
<td>799294</td>
<td>Biblo Baggins$_{13}$</td>
</tr>
</tbody>
</table>

Without length filter: 16 edit distance computations

With length filter ($k = 3$): 12 edit distance computations

- J. R. R. Tolkien \leftrightarrow C. S. Lewis is pruned
- all pairs (..., John R. R. Tolkien) but
 (J. R. R. Tolkien, John R. R. Tolkien) are pruned
Outline

1 Motivation

2 Filters for the Edit Distance
 - Lower Bound Filters
 - Length Filter
 - q-Grams: Count Filter
 - q-Grams: Position Filtering
 - Experiments

3 The q-Gram Distance
 - Definition and Properties

4 Conclusion
What is a q-Gram?

- **Intuition:**
 - slide window of length q over string $x \in \Sigma^*$
 - characters covered by window form a q-gram
 - where window extends string: fill with dummy character $\#$ \(!\in\Sigma\)

- **Example:** $x = \text{Frodo}$, $q = 3$

 extended: $\#\#\text{Frodo}\#\#$

 q-grams: $\#\#F$

 $\#F$

 F

 r

 o

 d

 o

 d

 o

 d

 o

 $\#$

- **q-Gram Profile** G_x: bag of all q-grams of x

 Profile size: $|G_x| = |x| + q - 1$
Intuition: Strings within small edit distance share many q-grams.

How many q-grams ($q = 3$) change/remain?

| | $|G_x|$ | | $|G_y|$ | $|G_x \cap G_y|$ |
|---|--------|---|--------|-----------------|
| peter | 7 | meter | 7 | 4 |
| peter | 7 | peters | 8 | 5 |
| peter | 7 | peer | 6 | 4 |

$ed(x, y) = 1 \Rightarrow |G_x \cap G_y| = \max(|G_x|, |G_y|) - q$
Filters for the Edit Distance

q-Grams: Count Filter

Multiple Edit Operations and Changing q-Grams

- $ed(x, y) = 1 \Rightarrow |G_x \cap G_y| = \max(|G_x|, |G_y|) - q$
- What if $ed(x, y) = k > 1$?

| x | $|G_x|$ | y | $|G_y|$ | $|G_x \cap G_y|$ |
|-------|--------|-------|--------|------------------|
| peter | 7 | meters| 8 | 2 |
| peter | 7 | petal | 7 | 3 |

- Multiple edit operations may affect the same q-gram:
 - $peter \rightarrow G_x = \{\#\#p, \#pe, pet, ete, ter, er\#, r\#\}$
 - $petal \rightarrow G_x = \{\#\#p, \#pe, pet, eta, tal, al\#, l\#\}$

- Each edit operation affects at most q q-grams.
Count Filtering

Theorem (Count Filtering [GIJ+01])

Consider two strings x and y with the q-gram profiles G_x and G_y, respectively. If x and y are within an edit distance of k, then the cardinality of the q-gram profile intersection is at least

$$|G_x \cap G_y| \geq \max(|G_x|, |G_y|) - kq$$

Proof (by induction):

- true for $k = 1$: $|G_x \cap G_y| \geq \max(|G_x|, |G_y|) - q$
- $k \to k + 1$: each additional edit operation changes at most q q-grams.
Implementation of q-Grams

- **Given:** table R with schema (A_0, A_1, \ldots, A_m)
 - A_0 is the key attribute
 - $A_i, i > 0$ are string-valued

- **Compute** auxiliary tables RA_iQ with schema $(A_0, Qgram)$:
 - each tuple stores one q-gram
 - string x of attribute A_i is represented by its $|x| + q - 1$ q-grams
 - $RA_iQ.A_0$ is the key value ($R.A_0$) of a tuple with $R.A_i = x$
 - $RA_iQ.Qgram$ is one of the q-grams of x

- **Example:**

<table>
<thead>
<tr>
<th>R</th>
<th>RA_1Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>A_1</td>
</tr>
<tr>
<td>1023</td>
<td>Frodo Baggins</td>
</tr>
<tr>
<td>21</td>
<td>J. R. R. Tolkien</td>
</tr>
<tr>
<td>239</td>
<td>C.S. Lewis</td>
</tr>
<tr>
<td>863</td>
<td>Bilbo Baggins</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Count Filtering Query

Query Q5 with **Count Filtering**:

```sql
SELECT R1.A0, R2.A0, R1.Ai, R2.Aj
FROM R1, R1AiQ, R2, R2AjQ
WHERE R1.A0 = R1AiQ.A0 AND
     R2.A0 = R2AjQ.A0 AND
     R1AiQ.Qgram = R2AjQ.Qgram AND
     ABS(LENGTH(A.name)-LENGTH(B.name)) <= k
GROUP BY R1.A0, R2.A0, R1.Ai, R2.Aj
HAVING COUNT(*) >= LENGTH(R1.Ai)-1-(k-1)*q AND
       COUNT(*) >= LENGTH(R2.Aj)-1-(k-1)*q AND
       levenshtein(R1.Ai,R2.Aj) <= k
```
Problem with Count Filtering Query

- Previous query Q5 works fine for $kq < \max(|G_x|, |G_y|)$.
- However: If $kq \geq \max(|G_x|, |G_y|)$, no q-grams may match even if $\text{ed}(x, y) \leq k$.
- Example ($q = 3$, $k = 2$):
 - WHERE-clause prunes x and y, although $\text{ed}(x, y) \leq k$
 - $x = \text{IBM}$ \quad $G_x = \{##I, #IB, IBM, BM#, M##\}$ \quad $|G_x| = 5$
 - $y = \text{BMW}$ \quad $G_y = \{##B, #BM, BMW, MW#, W##\}$ \quad $|G_y| = 5$

- False negatives:
 - short strings with respect to edit distance (e.g., $|x| = 3$, $k = 3$)
 - even if within given edit distance, matches tend to be meaningless (e.g., abc and xyz are within edit distance $k = 3$)
Fixing Count Filtering Query

- Fix query to avoid false negatives [GIJ+03]:
 - Join pairs \((x, y)\) with \(kq \geq \max(|G_x|, |G_y|)\) using only length filter.
 - Union results with results of previous query Q5.

- Query Q6 without false negatives (extends previous query Q5):

  ```
  UNION ALL
  SELECT R1.A0, R2.A0, R1.Ai, R2.Aj
  FROM R1, R2
  WHERE
    LENGTH(R1.Ai)+q-1 <= k*q AND
    LENGTH(R2.Aj)+q-1 <= k*q AND
    ABS(LENGTH(R1.Ai) - LENGTH(R2.Aj)) <= k
    levenshtein(R1.Ai,R2.Aj) <= k
  ```

- Note: We omit this part in subsequent versions of the query, as it remains unchanged.
Outline

1 Motivation

2 Filters for the Edit Distance
 - Lower Bound Filters
 - Length Filter
 - q-Grams: Count Filter
 - q-Grams: Position Filtering
 - Experiments

3 The q-Gram Distance
 - Definition and Properties

4 Conclusion
Positional q-grams

- Enrich q-grams with position information:
 - extended string: prefix and suffix string x with $q - 1$ characters #
 - slide window of length q over extended string x'
 - characters covered by window after shifting it i times form the q-gram at position $i + 1$

- Example: $x = \text{Frodo}$

 extended string:
 positional q-grams:

Filters for the Edit Distance \(q\)-Grams: Position Filtering

Computing Positional \(q\)-Grams in SQL

- Given: table \(N\)
 - \(N\) has a single attribute \(i\)
 - \(N\) is filled with numbers from 1 to \(max\) (\(max\) is the maximum string length plus \(q - 1\))

- Positional \(q\)-grams in SQL (Q7):

\[
\text{INSERT INTO RAiQ}
\begin{align*}
\text{SELECT } & \text{R.A0, N.i,} \\
& \text{SUBSTRING(CONCAT(} \\
& \text{SUBSTRING ('#..#', 1, q - 1),} \\
& \text{LOWER(R.Ai),} \\
& \text{SUBSTRING ('#..#', 1, q - 1)),} \\
& \text{N.i, q)} \\
\text{FROM } & \text{R, N} \\
\text{WHERE } & \text{N.i} \leq \text{LENGTH(R.Ai) + q - 1}
\end{align*}
\]
Corresponding q-Grams

- **Corresponding q-gram:**
 - Given: positional q-grams (i, g) of x
 - transform x to y applying edit operations
 - (i, g) “becomes” (j, g) in y
 - We define: (i, g) corresponds to (j, g)

- **Example:**
 - $x' = ##abaZabaabaaba##$, $y' = ##abaabaabaabaabaaba##$
 - edit distance is 1 (delete Z from x)
 - $(7, aba)$ in x corresponds to $(6, aba)$ in y
 - ... but not to $(9, aba)$
Position Filtering

Theorem (Position Filtering [GIJ+01])

If two strings x and y are within edit distance k, then a positional q-gram in one cannot correspond to a positional q-gram in the other that differs from it by more than k positions.

Proof:
- each increment (decrement) of a position requires an insert (delete);
- a shift by k positions requires k inserts/deletes.
Position Filtering

Query Q8 with \textbf{Count and Position Filtering}:

\begin{verbatim}
SELECT R1.A0, R2.A0, R1.Ai, R2.Aj
FROM R1, R1AiQ, R2, R2AjQ
WHERE R1.A0 = R1AiQ.A0 AND
 R2.A0 = R2AjQ.A0 AND
 R1AiQ.Qgram = R2AjQ.Qgram AND
 \text{ABS}(\text{LENGTH}(A.name)-\text{LENGTH}(B.name)) \leq k AND
 \text{ABS}(R1AiQ.Pos-R2AjQ.Pos) \leq k
GROUP BY R1.A0, R2.A0, R1.Ai, R2.Aj
HAVING \text{COUNT}(*) \geq \text{LENGTH}(R1.Ai)-1-(k-1)*q AND
 \text{COUNT}(*) \geq \text{LENGTH}(R2.Aj)-1-(k-1)*q AND
 \text{levenshtein}(R1.Ai,R2.Aj) \leq k
\end{verbatim}
Outline

1 Motivation

2 Filters for the Edit Distance
 - Lower Bound Filters
 - Length Filter
 - q-Grams: Count Filter
 - q-Grams: Position Filtering
 - Experiments

3 The q-Gram Distance
 - Definition and Properties

4 Conclusion
Experimental Data

- All experimental results taken from [GIJ+01]
- Three string data sets:
 - set1: 40K tuples, average length: 14 chars
 - set2: 30K tuples, average length: 38 chars
 - set3: 30K tuples, average length: 33 chars
String Length Distributions

Set 1

Set 2

Set 3
Candidate Set Size

- Question: How many edit distances do we have to compute?
- $q = 2$
- Caption:
 - CP: cross product
 - L: length filtering, P: position filtering, C: count filtering
 - Real: number of real matches

Set 1
Candidate Set Size

Question: How many edit distances do we have to compute?

\[q = 2 \]

Caption:
- CP: cross product
- L: length filtering, P: position filtering, C: count filtering
- Real: number of real matches

Set 2
Candidate Set Size

- Question: How many edit distances do we have to compute?
- \(q = 2 \)
- Caption:
 - CP: cross product
 - L: length filtering, P: position filtering, C: count filtering
 - Real: number of real matches

Set 3
Question: How does the choice of q influence the filter effectiveness?

- Edit Distance Threshold $k = 2$
- Edit Distance Threshold $k = 3$
Filters for the Edit Distance Experiments

Response Time

- Approximate self-join on sample of 1000 tuples (set 1)
 (full dataset > 3 days without filters!)
- k: edit distance threshold
- Q_1: edit distance without filters
- Q_2: edit distance with filters

<table>
<thead>
<tr>
<th>Response Time (sec)</th>
<th>$k=1$</th>
<th>$k=2$</th>
<th>$k=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_1 (UDF only)</td>
<td>1354</td>
<td>2026</td>
<td>2044</td>
</tr>
<tr>
<td>Q_2 (Filtering)</td>
<td>48</td>
<td>68</td>
<td>91</td>
</tr>
</tbody>
</table>
Outline

1 Motivation

2 Filters for the Edit Distance
 - Lower Bound Filters
 - Length Filter
 - q-Grams: Count Filter
 - q-Grams: Position Filtering
 - Experiments

3 The q-Gram Distance
 - Definition and Properties

4 Conclusion
The q-Gram Distance

Definition (q-Gram Distance [Ukk92])

Let G_x and G_y be the q-gram profiles of the strings x and y, respectively. The q-gram distance between two strings is the number of q-grams in G_x and G_y that have no match in the other profile,

$$\text{dist}_q(x, y) = |G_x \cup G_y| - 2|G_x \cap G_y|.$$

Example: $q = 2, x = abab, y = abcab$

- $G_x = \{#a, ab, ba, ab, b#\}$
- $G_y = \{#a, ab, bc, ca, ab, b#\}$
- $G_x \cup G_y = \{#a, ab, ba, ab, b#, #a, ab, bc, ca, ab, b#\}$
- $G_x \cap G_y = \{#a, ab, ab, b#\}$
- $\text{dist}_q(x, y) = |G_x \cup G_y| - 2|G_x \cap G_y| = 11 - 2 \cdot 4 = 3$
The q-gram distance is a **pseudo metric**:
For all $x, y, z \in \Sigma^*$
- $\text{dist}_q(x, y) + \text{dist}_q(y, z) \geq \text{dist}_q(x, z)$ (triangle inequality)
- $\text{dist}_q(x, y) = \text{dist}_q(y, x)$ (symmetric)
- $\text{dist}_q(x, y) = 0 \iff x = y$

Note: Identity condition relaxed: $\text{dist}_q(x, y) = 0 \not\Rightarrow x = y$

i.e., the q-gram distance between two different strings can be 0

Example:
\[
\text{dist}_q(axybxy cxyd, axy cxyb xyd) = 0
\]
\[
G_x = G_y = \{##a, #ax, axy, xyb, ybx, bxy, yxc, ycx, cxy, yxd, yd#, d##\}
What is a good threshold?

\[
ed(\text{International Business Machines Corporation,} \\
\text{International Business Machines Corporation}) = 2 \\
ed(\text{IBM, BMW}) = 2 \\
ed(\text{Int. Business Machines Corp.,} \\
\text{International Business Machines Corporation}) = 17
\]

Problem: Absolute numbers not always meaningful...

Solution: Compute error relative to string length!
Distance Normalization (2/3)

- Normalize distance such that $\delta(x, y) \in [0..1]$
- **Edit Distance**: $0 \leq ed(x, y) \leq \max(|x|, |y|)$
- Normalized Edit Distance: $0 \leq \text{norm-ed}(x, y) \leq 1$

$$\text{norm-ed}(x, y) = \frac{ed(x, y)}{\max(|x|, |y|)}$$

- **q-Gram Distance**: $0 \leq \text{dist}_q(x, y) \leq |G_x| + |G_y|$
- Normalized q-Gram Distance: $0 \leq \text{norm-dist}_q(x, y) \leq 1$

$$\text{norm-dist}_q(x, y) = \frac{\text{dist}_q(x, y)}{|G_x| + |G_y|} = 1 - \frac{|G_x \cap G_y|}{|G_x \cup G_y|}$$
Normalized edit distance:

\[
\text{norm-ed}(\text{International Business Machines Corporation}, \\
\text{International Business Machine Corporation}) = 0.047
\]
\[
\text{norm-ed}(\text{IBM}, \text{BMW}) = 0.66
\]
\[
\text{norm-ed}(\text{Int. Business Machines Corp.}, \\
\text{International Business Machines Corporation}) = 0.4
\]

Normalized \(q\)-gram distance \((q = 3)\):

\[
\text{norm-dist}_q(\text{International Business Machines Corporation}, \\
\text{International Business Machine Corporation}) = 0.089
\]
\[
\text{norm-dist}_q(\text{IBM}, \text{BMW}) = 1.0
\]
\[
\text{norm-dist}_q(\text{Int. Business Machines Corp.}, \\
\text{International Business Machines Corporation}) = 0.36
\]
Edit Distance vs. q-Gram Distance

- Edit distance can not handle block-moves well:
 \[x = \text{Nikolaus Augsten} \quad y = \text{Augsten Nikolaus} \]
 \[\text{norm-ed}(x, y) = 1.0 \]
 \[\text{norm-dist}_q(x, y) = 0.39 \quad (q = 3) \]

- q-Gram distance may be too strict:
 \[x = +39-06-46-74-22 \quad y = (39 \ 06 \ 467422) \]
 \[\text{norm-ed}(x, y) = 0.4 \]
 \[\text{norm-dist}_q(x, y) = 1.0 \quad (q = 3) \]
Approximate join with edit distance inefficient.

Edit distance filters speed up join:
- Length filter: based on the string length
- Count filter: based on q-Grams
- Position filter: based on positional q-Grams

q-Gram distance: a distance on its own
- pseudo metric
- can handle block moves
What’s Next?

- Hierarchical data and XML in a database system
 - (un)ordered, labeled trees
 - representing trees in a database
 - query and update efficiency
 - representing XML as a tree
Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan, and Divesh Srivastava.
Approximate string joins in a database (almost) for free.

Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan, and Divesh Srivastava.

Esko Ukkonen.