
Data Warehouse Jürgen Tragust

1 / 2

Data Warehouse

Lab Module 1

Deadline: 19.10.2012

1. (1pts) Choose the domain of the data warehouse. Describe an example company and the reason why a data

warehouse is needed. (max 500 words)

The domain of my data warehouse should include the data of a company on the beverage market. Let’s call the

company “drinks.com”. It consists of 200 stores spread over 6 countries in Europe. Each store, depending on
its location, has different suppliers and customers. So each store has to deal with customer, supplier and

product data and has to store them in a database.

Now management would like to have some information about the overall sales and know if the advertising

reaches the possible new customers.

Example:

 “How many bottles of Coke have we sold in Italy during the last month?”

 “Do we sell more beer in Bolzano or Trento?”

 “Which customers have spent more than 50€ within 4 weeks during the last 3 years after receiving a

promotion newsletter?”

A data warehouse is needed, because the company wants to optimise its business. The data warehouse will

help to make decisions. Since the data, which provide a data warehouse, are related to do analytics, we can

perform advanced queries that help us deciding to do something or not. Example: to raise the stock of a

product or to drop the product.

2. (2pts) What are the business processes that you want to model and what business questions should they help to
answer. Consider minimum two business processes. Which granularity level is appropriate for the described

processes? (max 500 words)

Business process 1: Sales

Business questions:

a. How many bottles of Coke have we sold in Italy last month?

b. What are the daily receipts per country?

a. Who are the 5 customers, which spent at most?

b. How many customers have used a promotion in the last month?

Granularity

Low granularity is needed since we have individual line items on a bill. We are talking about event

facts. It is possible to aggregate them over time (SUM, AVG, …)

Product by Customer by Store by Promotion by Day

(product, customer, store, promotion, date, number of units, amount)

Dimensions: product, customer, store, promotion, date

Measures: number of units, amount

Business process 2: Order

Business questions:

a. What is the total amount of energy drinks ordered from a specific supplier every year?

b. What is the daily total amount of mineral water ordered last month?

Granularity

 (product, date, supplier, ordered quantity, receipts, discount)

Dimensions: product, date, supplier

 Measures: ordered quantity, receipts, discount

Data Warehouse Jürgen Tragust

2 / 2

Business process 3: Stock of Inventory

Business questions:

a. Which product stocks did run out at least once last week at the same time in every warehouse?

b. What is the average quantity of beer each warehouse orders among their suppliers every month?

Granularity

The granularity doesn’t have do be so detailed, because here we have longer time spans (weeks).

 (product, date, warehouse, stocked quantity)

Dimensions: product, date, supplier

Measures: stocked quantity

Data Warehouse Jürgen Tragust
	

1 / 2	
	

Data Warehouse
Module 1 Task 2
Deadline: 29.10.2012

1. (1pt) Choose minimum two facts that you want to model and describe them (max 250 words). Write what do
the facts represent, what are their dimensions and measures. To make the facts complicated enough follow the
guidelines:

a. One fact should have minimum four dimensions.
b. One fact should have minimum two measures with different additivity properties.

The first fact I choose is the “Sales Fact”, which helps to decide about different selling strategies. Date,
Product, Store, Customer and Promotion are defined as dimensions. The dimension promotion is tagged as
optional like the attribute alcohol free of the dimension product. The attributes address, tel. nr, description,
startdate and enddate cannot be used for aggregation and are tagged as non-dimension descriptive attributes.
The fact attribute receipts has to be calculated (SUM(quantity*price)). The fact attribute quantity is added
(Count(Sales)). Price per unit is the average price of all given products. The “VAT” is a cross-dimensional
attribute since its value is defined by the combination of the products category and the state. Finally, there is
the city attribute, which is defined as a shared hierarchy.

The second fact is the “Order Fact”. With the order fact it is possible to analyse the orders of different
suppliers and to see whether it is better to negotiate with a supplier or to change to another one. The “Order
Fact” has 3 dimensions: Product, Date and Supplier. Descriptive attributes are the address and the telephone
number of the supplier. The fact attribute total costs has to be calculated (SUM(quantity*price)). The fact
attribute quantity is added (Count(Orders)). Price per unit is the average price of all given products. The
“VAT” is a cross-dimensional attribute since its value is defined by the combination of the products category
and the state.

Data Warehouse Jürgen Tragust
	

2 / 2	
	

2. (4pts) Draw fact schema in the DFM for all the chosen facts. Mark properly on the schema the following
concepts: fact, dimensions with hierarchies, measures, descriptive attributes, non-additivity of the measures,
cross-dimensional attributes, convergence, shared hierarchies, multiple arcs, optional arcs, recursive
hierarchies.

Data Warehouse Jürgen Tragust
	

1 / 6	
	

Data Warehouse
Module 1 Task 3
Deadline: 09.11.2012

1. (2pts) Draw a star schema (or snowflake schema if it suits better) for your facts (choose main two) including
primary/foreign key relations, attributes and cardinalities. For clarity, do not consider too many descriptive
attributes from the DFM schema, e.g. name is enough. Describe all the non-trivial choices that you made, e.g.
how did you model a multiple arc or a recursive hierarchy.

Snowflake Schema for the SALES Fact

The cross-dimensional attribute VAT defines a many to many association between the city dimension and the product
dimension. So I have to insert a new table, which primary key is composed by the attribute category (foreign key to
product_category) and state (foreign key to city_state).

In addition I have to model a shared hierarchy with partial sharing for the city dimension. To avoid redundancy I insert
a new Table. A disadvantage of that solution could be that additional costs for queries will appear, since more joins
have to be done.

Data Warehouse Jürgen Tragust
	

2 / 6	
	

Snowflake Schema for the ORDER Fact

The combination of the two schemas

Data Warehouse Jürgen Tragust
	

3 / 6	
	

2. (3pts) Choose two of the business questions that you find important (one for each fact) and write SQL queries

that solve them. Draw sample instances of the tables that are involved in the queries (several rows for the
dimension tables and up to 15 rows for the fact tables). Show the results of the queries on the instances.

a) What are the daily receipts per country?

Involved tables: date_dim, sales_fact, store_dim, city_dim

Table: date_dim

Table: sales_fact

Table: store_dim

Data Warehouse Jürgen Tragust
	

4 / 6	
	

Table: city_dim

Query:

SELECT d.date, c.city_country, SUM(sales_receipts)
FROM date_dim d, sales_fact sa, store_dim st, city_dim c
WHERE sa.store_id = st.store_id AND st.city_id = c.city_id AND
 sa.date_id = d.date_id
Group By d.date, c.city_country

Result:

Data Warehouse Jürgen Tragust
	

5 / 6	
	

b) What is the total amount of energy drinks ordered from a specific supplier every year?

Involved tables: date_dim, order_fact, supplier_dim, product_dim

Table: date_dim

Table: order_fact

Table: supplier_dim

Table: product_dim

Data Warehouse Jürgen Tragust
	

6 / 6	
	

Query:

SELECT d.year, s.supplier_name, SUM(o.order_quantity) As Quantity
FROM date_dim d, order_fact o, supplier_dim s, product_dim p
WHERE d.date_id = o.date_id AND o.supplier_id = s.supplier_id AND

p.product_id = o.product_id AND p.product_type = "Energy Drink"
Group By d.year, s.supplier_name

Result:

Data Warehouse Jürgen Tragust
	

1 / 2	
	

Data Warehouse
Name: Jürgen Tragust
Module 1 Task 4
Deadline: 16.11.2012

1. (2pts) Write an SQL script (name it name_surname_ex4.sql) that creates your data warehouse (fact and
dimension tables). Name of each table should start with your initials, e.g. the sales table of Mateusz Pawlik
should be named mp_SALES

=> Attached file

2. (2pts) Populate your data warehouse manually or using a data generator: minimum 100 tuples in the fact

tables, minimum 10 tuples in the dimension tables (considering a star schema). Add instructions that populate
your data warehouse to the script from point 1.

=> Attached file

3. (1pts)Write two queries for your data warehouse: first query using ROLLUP, CUBE or GROUPING SETS
operator, second query using GROUPING ID and/or GROUP ID function. Queries, their SQL code, the results
and explanation of the results save in name_surname_ex4.pdf file.

Query 1: Show me the receipts by month, by year and the total receipts.

SELECT d.year, d.month, SUM(sa.sales_receipts)
FROM jt_store st,jt_sales sa, jt_date d
WHERE st.store_id = sa.store_id
AND sa.date_id = d.date_id
GROUP BY Rollup(d.year, d.month)
ORDER BY d.year, d.month;

Data Warehouse Jürgen Tragust
	

2 / 2	
	

Query 2: Show me the receipts by year and state with a subtotal for each year and each country and a total of
all the receipts.

SELECT DECODE(grouping_id(d.year, c.city_state),
 0, ' country',
 1, 'subtotal year',
 2, 'subtotal state',
 3, 'TOTAL',

 null) AS amount, d.year, c.city_state,
 SUM(sa.sales_receipts) As receipts

FROM jt_sales sa, jt_date d, jt_store st, jt_city c
WHERE sa.date_id = d.date_id
AND sa.store_id = st.store_id
AND st.city_id = c.city_id
GROUP BY Cube(d.year, c.city_state)
ORDER BY d.year, c.city_state;

Data Warehouse Jürgen Tragust
	

1 / 4	
	

Data Warehouse
Name: Jürgen Tragust
Module 1 Task 5
Deadline: 23.11.2012

1. (3pts) Write queries for each of the following points:
a) one ranking query using NTILE, RANK or DENSE RANK functions,
b) one windowing query using the windowing clause,
c) one period-to-period comparison query (a query comparing values across time periods, e.g. compare sales

for every week of the current year with the sales of the corresponding weeks in the past year).

In the answer include queries in natural language, their SQL codes and the results.

a) Show me the revenues of each state and rank them according to their receipts (from the highest amount to

the lowest)

SELECT c.city_state, SUM(sa.sales_receipts) As receipts,

 RANK() OVER (ORDER BY SUM(sa.sales_receipts) DESC) as RANK
FROM jt_sales sa, jt_date d, jt_store st, jt_city c
WHERE sa.date_id = d.date_id
AND sa.store_id = st.store_id
AND st.city_id = c.city_id
GROUP BY (c.city_state);

b) Show me the sales per month and the accumulated sales of this year.

SELECT d.year,d.month, d.month_of_year, SUM (sa.sales_receipts) as receipts,

SUM(SUM(sa.sales_receipts)) OVER (Partition by d.year ORDER BY
d.month_of_year) as accumulated

FROM jt_sales sa, jt_date d, jt_store st, jt_city c
WHERE sa.date_id = d.date_id
AND sa.store_id = st.store_id
AND st.city_id = c.city_id
GROUP BY d.year, d.month, d.month_of_year;

Data Warehouse Jürgen Tragust
	

2 / 4	
	

c) Compare each sales date with the date before and the date after.

SELECT d.date_sale, SUM (sa.sales_receipts) as receipts,
 LAG(SUM (sa.sales_receipts),1) OVER (Order By d.date_sale) as LAG,
 LEAD(SUM (sa.sales_receipts),1) OVER (Order By d.date_sale) as LEAD
FROM jt_sales sa, jt_date d, jt_store st, jt_city c
WHERE sa.date_id = d.date_id
AND sa.store_id = st.store_id
AND st.city_id = c.city_id
GROUP BY d.date_sale;

2. (2pts) Choose three queries over the same fact that you think would be frequently executed on your data
warehouse. Using the concept of Multidimensional lattice write, which materialized views you should create in
order to optimize the query execution. The queries can be simple, but should consider one or more dimensions at
different granularity level. You can reduce the dimensions in order to draw the multidimensional lattice (e.g.
instead of the entire date hierarchy use only day and year). In the answer include three queries written in natural
language and which grouping sets do they consider, simplified fact schema, lattice drawing, what are the
candidate views and which of them should be created.

a. Total revenue grouped by store and date
Candidate view: G1 = {a,c}

b. Total number of sold products grouped by year and state.
Candidate view: G5 = {b,d}

c. Total revenue grouped by store and year.
Candidate view: G3 = {a,d}

a => store
b => state
c => date
d => year
	

Data Warehouse Jürgen Tragust
	

3 / 4	
	

Multidimensional lattice:

As we see G1 is the root in this lattice and therefore it can compute also G3 and G5. Vice versa it is not possible,
because we cannot go for example from year to day. So G1 has to be created.

Materialized view:

CREATE MATERIALIZED VIEW JT_DAY_STORE
ENABLE QUERY REWRITE
AS
SELECT d.date_sale, sa.store_id, SUM(sa.sales_receipts) as Receipts
FROM jt_SALES sa, jt_date d
WHERE sa.date_id = d.date_id
GROUP BY d.date_sale, sa.store_id
ORDER BY Receipts desc;

CREATE MATERIALIZED VIEW JT_YEAR_STORE
ENABLE QUERY REWRITE
AS
SELECT d.year, sa.store_id, SUM(sa.sales_receipts) as Receipts
FROM jt_SALES sa, jt_date d
WHERE sa.date_id = d.date_id
GROUP BY d.year, sa.store_id
ORDER BY Receipts desc;

CREATE MATERIALIZED VIEW JT_YEAR_STATE_Quantity
ENABLE QUERY REWRITE
AS
SELECT d.year, c.city_state, SUM(sa.sales_quantity) as Quantity
FROM jt_SALES sa, jt_date d, jt_store st,jt_city c
WHERE sa.date_id = d.date_id AND sa.store_id = st.store_id AND st.city_id =
c.city_id
GROUP BY d.year, c.city_state
ORDER BY Quantity desc;

(+1pt) Explain what would you gain/loose (in the query cost, used space and query execution time) by using the
queries pointed by the multidimensional lattice. Be specific. Run some experiments to confirm the theoretical
results.

The candidate views
are highlighted in
gray

Data Warehouse Jürgen Tragust
	

4 / 4	
	

3. (2pts) Write a query, which you could speed up by using a bitmap index. Show how will the index look like. In
the answer include the query in both, natural language and SQL, description on which attributes should the index
be built, drawing of the bitmap index for several rows, SQL of how to build the desired index and SQL of the
rewritten query that uses the index.

a) Show me all non alcoholic products

SELECT product_name
FROM jt_product
WHERE product_category = “non alcoholic”

The index should be built on the product_category attribute since it has low cardinality (values: alcoholic and
non alcoholic)

product_id
product_category

alcoholic non alcoholic

1 1 0
2 0 1
3 1 0
4 0 1
5 1 0
6 0 1
7 1 0
8 1 0
9 0 1

10 1 0
11 1 0
12 0 1

CREATE BITMAP INDEX product_category_bi
ON jt_product(product_category);

(+1pt) Explain exactly what and how do you gain by using the bitmap index. What is the overhead of creating
the index, especially in its size? Be specific. Run some experiments to confirm the theoretical results.

Data Warehouse Jürgen Tragust
	

1 / 2	
	

Data Warehouse
Name: Jürgen Tragust
Module 1 Task 6
Deadline: 30.11.2012

1. (3pts) Using AWM create cubes, dimensions, hierarchies, attributes and measures of your data warehouse. Load
the cube data. Show the result of the ROLLUP/CUBE query from the Task 4.3 in AWM.

This is the cube, which was possible to create. It shows the receipts by Time and Product

Data Warehouse Jürgen Tragust
	

2 / 2	
	

2. (2pts) Write two queries that use OLAP objects created in the Task 5.1. Show the query in natural language,
SQL code and the results. You can rewrite the queries from the Task 5.1.

The highlighted tables and views are generated automatically by the AWM and
the cube generation.

Now I can use the views instead of joining a lot of views, but I didn’t
know exactly how to use those for my queries.

