
Advanced Data Management Technologies
Project Module 1 – Data Warehouse

Julian Aron Prenner

February 5, 2014

Contents

1 Domain, Requirements and Modelling 3
1.1 Business Process Modelling . 3
1.2 Dimensions and Bus Matrix . 4
1.3 Queries . 6
1.4 Relevant Measures, Granularity and Additivity 7

2 Conceptual Design 9
2.1 The Extraction Fact . 9
2.2 The Sale Fact . 10
2.3 The Inventory Fact . 12

3 Logical Design 13
3.1 Mapping Multiple Arcs . 13
3.2 Snowflake against will . 13
3.3 The time dimension anomaly . 13
3.4 The Extraction Fact . 14
3.5 The Sale Fact . 15
3.6 The Inventory Fact . 16
3.7 Simple Queries . 16

3.7.1 Extraction Fact . 16
3.7.2 Sale Fact . 19

4 Physical Design 22
4.1 Simple ROLAP Queries . 22

5 Advanced Querying 26
5.1 Ranking Query . 26
5.2 Windowing Query . 26
5.3 Period-to-Period Query . 27
5.4 Materialized Views . 29

1 Domain, Requirements and Modelling

The Covelano Murble Spa., a company in Silandro - South Tyrol, has specialized in
the manufacturing, extraction and commercialization of marble and is considering the
creation of a data warehouse to aid them in business decisions, mainly where to dig in
the quarry and where to extend business efforts . Murble from this quarry has been used
to built castles in South Tyrol, churches in Rome, mosques in the Near east and lately
in the luxury flats of the One57 skyscraper in New York.

Murble blocks are excavated from the quarry at at 2.200m over the sea surface (it is the
heighest marble quarry in Europe). These raw blocks are then pre-machined and cut
into smaller blocks as to make them safely and easily transportable. At a later time the
blocks are brought down by road into the valley to the storehouse next to the factory in
Silandro.

Once arrived at the factory, the blocks are roughly sorted by type and vein pattern.
While some blocks are left as they are and sold as a whole, most of them are cut into
slabs by big machines. Before a great deal of the slabs is cut into tiles however, they are
further processed; their surface is treated, depending on their later use. Most slabs that
end up as tiles are being sanded and polished. Slabs too, are, if the customer wishes,
sold as a whole or cut to a specific size. After the surface has been treated they are
examined for cracks, flaws and other imperfections.

Recently, a system has been installed that automatically photographes all the slabs on
the conveyor belt immediately after they leave the grinding and polishing machine using
a line camera. In the future, the system should also be able to detect, identify and locate
flaws and defects of any kind. The data collected in this manner will then be, amongst
other data, loaded into the data warehouse in the context of the ETL process.

As one of the last steps, flawed slabs and blocks are processed to gravel and crushed rock
and solts intended for processing to tiles are cut into tiles of varying size. Eventually a
part of the tiles are treated with resin.

All products are then sorted and moved into the warehouse.

1.1 Business Process Modelling

I proposed the following business processes to be modeled:

Extraction Each block extracted from the querry is recorded, along with important
measures such as its dimensions, weight and type. The date of the extraction, the
gallery, the height and depth at which the block has been extracted, the date of
transportation to the storehouse is stored, as well as the machinery used and the
workers involved; the latter two are arguably mock and arificial and have been
added mostly to make this example more convoluted and bump the number of
dimensions over the required minimum.

3

Sale Each sale is registered, along with the date of purchase and a detailed customer
profile.

Inventory Each product in the warehouse is recorded, together with details such as its
dimensions, pattern etc. Additionally, the date of storage, quantity and possible
reservations by customers are noted.

1.2 Dimensions and Bus Matrix

Before we can set up a Bus Matrix we need to consider necessary dimensions:

Date Dimension An identical conformed dimension that is shared across all business
process fact tables, as can be easily be spotted on the Bus Matrix below. Granu-
larity is discussed at a later point.

Product Dimension The product dimension is by far the biggest of the seven dimen-
sions. It contains all products, that is blocks, slabs and tiles with all their myriad
different properties. The product dimension is shared and among different fact
tables and mostly identical. It contains the conformed surface dimension.

Surface Dimension This dimension contains information about the quality of the stone’s
surface. That is its type (e.g. Black and White or Vena d‘Oro) and details about
the vein patterns such as color, intensity, angle, thickness and cloudyness.

Customer Dimension This dimension represents a customer profile, that is name, ad-
dresses, and other details. It is shared and identical.

Worker Dimension Lists all workers and operators of the company and is used to record
who was involved in specific processes. This dimension is only used in the extrac-
tion fact.

Machine Dimension Similarly, this dimension is a list of all the machines the company
owns. It allowes to find out which machines were used for a given business process.
This dimension is only used in the extraction fact.

Gallery Dimension A simple and streightforward dimension. A quarry usually (and in
this case too) has multiple galleries. It is generally interesting to know the origi-
nating gallery for a given product. This dimension is only used in the extraction
fact.

Position Dimension A simple dimensions that is mostly comprised of positional tuples
(depth, height): each gallery is divided into floors (called ”bancata” by the spe-
cialist).Further, a block is excavated at a specific depth (called ”avanzamento” by
the specialists). We will simply call them depth and height. This dimension is only
used in the extraction fact.

Dimensions are discussed with more detail in section 2.

4

Considerations about the Gallery and Position Dimensions The gallery and position
dimensions could be unified to a single new position dimension, possibly with the
following functional dependencies defined upon it: position → gallery, position →
depth, position→ height. But the company is mostly interested in restricting queries to
galleries. Thus, in order to simplify queries they were separated. Of course, it is always
nice too, to get a dimension for free when there is a minumum number of dimensions
required.

Table 1 shows a possible bus matrix for this data warehouse.

D
a
te

P
ro

d
u

c
t

S
u

rf
a
c
e

C
u

st
o
m

e
r

W
o
rk

e
r

M
a
ch

in
e

G
a
ll
e
ry

P
o
si

ti
o
n

Extraction 7 7 7 7 7 7

Sale 7 7 7 7

Inventory 7 7 7 7

Table 1: Simple and straightforward,
the Bus Matrix for the planned data warehouse.

5

1.3 Queries

Table 2 lists possible questions the company would like to have answered.

EXTRACTION

1. What is the average amount of stone (in tons) ex-
tracted per month per gallery ?

2. What is the average volume of stone (in m3) extracted
per month per gallery ?

3. What is the average volume of stone (in tons) ex-
tracted per month per gallery per worker ?

4. What is the average volume of stone (in tons) ex-
tracted per month per gallery per type ?

5. What is the gallery from which the most amount of
Vena’d Oro (murble of a specific type) has been ex-
tracted ?

6. What is the gallery from which the most amount (vol-
ume) of flawed stone has been extracted ?

7. What is the longest time a block has been exposed
directly to the effects of weathering per month (i.e.
the time between the extraction and transportation
from the quarry to the storehouse) ?

SALE

1. What are our best customers ?

2. Where are our best customers ?

3. What is the best selling stone type (e.g. Venosta) by
continent ?

4. What are the trends in time in terms of stone type
that customers want ?

5. To which country is most of the stone exported by
mass or volume ?

6. In what country is selling stone most profitable, pos-
sibly broken down by year ?

6

INVENTARY

1. How much stone is stored in our warehouses ?

2. How much stone is added on average to the warehouses
per month or year, or even day ?

3. How much stone is removed on average (hopefully
sold) from the warehouses per month or year ?

4. Break down the inventory by product type and express
as percentages, to give e.g. answer to the question:
How much percent of the stone in the stock are blocks,
tiles etc. ?

5. Refine the previous query and add stone type or vein
patterns. That is, to what products, in percentages,
has the stone of a certain type been processed ?

6. Is there a recognizable trend that we will be out of
stock for a specific product in the long future.

Table 2: A few questions that the CTO of the Covelano Murble Spa.
would like to have answered.

It is obvious that the queries for the SALE fact can perfeclty be matched with the queries
for the EXTRACTION. If the most successful stone type is Silvergold, concentrate on
the gallery that yielded most stone of that type as it is likely that there is more there.
If the company gets a large order for a specific stone type, or even vein pattern that
cannot be satisfied from the stock they have at least a clue where to dig for it.

1.4 Relevant Measures, Granularity and Additivity

In the following, the appropriate fact granularity and measures are discussed to at least
be able to answer the queries above. Additional measures and attributes will be added
in the conceptual design phase.

As far as the extraction fact is concerned,

• The hierachy built on the surface dimension must include at least a type attribute.

• The date hierachy must include at least the day, month and year attributes.

• The amount is caluclated by aggregating the weight measure along any dimension.
It is fully additive. It is measured in kilograms.

7

• The volume measure is added when aggregating every dimension and is calculated
indirectly from the height, width and diameter measures.

• The flawed volume measure is indirectly calculated by summing up the products
of the flawed measure, which records how much percent of an extracted block had
flaws of any kind, and the volume measure. It is additive and measured in m3,
while the flawed measure itself is non-additive.

• The height, width and diameter measures are by themselves non-additive along
any dimension (except maybe for things like ”all the blocks we extracted stacked
on top of each other extend to the moon and back” etc.). They can, however, be
aggregated using AV G(), MIN() and MAX() along any dimension.

As far as the sale fact is concerned,

• The hierachy built on the customer dimension must include at least an address
attribute, country and continent attributes.

• The hierachy built on the product dimension must include at least a surface type
attribute.

• The date hierachy must include at least the day, month and year attributes.

• The quantity measure is added when aggregating every dimension, i.e. is additive.

• The profit measure is added when aggregating every dimension, i.e. is additive.

As far as the inventory fact is concerned,

• The Inventory Periodic Snapshot model is used.

• The quantity measure is added when aggregating along the product and customer
dimension. It is non-additive for the date dimension.

8

2 Conceptual Design

The structre of the facts and dimensions has already been briefly alluded to and partly
anticipated in the previous chapter. Here, we will succintly but in detail discuss specific
aspects of the modelling, mostly with reference to the dimensional fact model, herafter
referred simply as DFM.

The notation used for the DFM models on the following pages mostly follows the notation
outlined in [Riz08] and [GR09], although slightly different notations are used there.

It holds true for dimensions, and facts too, that only an arbitarily selected subset of
attributes and measures will be depicted, and that conversely a number of them have
been omitted, as the author is thoroughly convinced that there lies no didactic value
within complicating this example and the corresponding diagrams.

2.1 The Extraction Fact

The extraction fact (Figure 1) models the fact already mentioned in the analysis
section with its measures and dimensions. The date dimension is shared for the roles
transport (date of transportation) and excavate (date of excavation from the quarry),
which can be, but not necessarily are, the same date.

Since possibly multiple workers and machines are involved in the extraction process,
a many-to-many association exists between those dimensions and the fact, denoted by
the double line. These ”multiple arcs” generally mean the loss of the summarizability
property, which can, however, be restored by weighting [LS97]. Since we assume that
each worker contributes the same effort a weight is not necessary, at least as far as workers
are concerned. Generally, these kind of situations are to be avoided, for they are highly
problematic when it comes to mapping the conceptual schema to a logical or physical
design. This is especially true for ROLAP. Fair enough, these kind of situations seem
to appear not all that rare and I thinks there should be better ways to deal with them;
maybe array or set types, that some of the more modern relational DBMS support (e.g.
Postgres, which supports array types) could remedy this problem. In our case, multiple
arcs were added to make this otherwise rather dull example a little more exciting.

I slightly deviate from the guideline in [Riz08]. Instead of marking non-additivity with
a dashed line, the possible aggreates are listed in parenthesis behind the measures so as
not to clutter and make unreadable the diagram.

The opening (i.e. when they first started digging in that gallery) descriptive attribute for
the gallery and the last revision (e.g. security checks) attribute for the machine dimen-
sion were mostly added to show off notation and to meet the appropriate requirements
and are arguable.

9

Additionaly attributes could be added to any of the dimensions, specifically to the worker
and machine dimensions, but they would be circumstantial, needlessly complicate ev-
erything and consume time spent better elsewhere.

date

quarter

month

day

year

semester

addressname

customer
...

city

county/district/province

state/region

country/nation

sales district

contact person

continent

surface

vein color
vein form
vein intensity

type

vein

product

type

SALE
quantity
profit

addressname

customer
...

city

county/district/province

state/region

country/nation

sales district

contact person

continent

surface

vein color
vein form
vein intensity

type

vein

product

type

date

quarter

month

day

year

semester

reserve sto
re

INVENTORY

av
g,

 m
in

, m
ax

quantity

name

kind

...

last revision

date

quarter

month

day

year

semester

transport ex
ca

va
te

surface

vein color
vein form
vein intensity

type

vein

salaryname

worker

job grade

...

name

opening

gallery

depth

height

position

EXTRACTION

weight
width (AVG, MIN, MAX)
height (AVG, MIN, MAX)
diameter (AVG, MIN, MAX)
flawed (AVG, MIN, MAX) machine

Figure 1: The DFM for the EXTRACTION fact

2.2 The Sale Fact

The customer dimension is incomplete (or ragged) for the city branch, as different nations
have different ways of dividing the country into administrative units. Large countries,
such as the U.S. have a very thorough subdivision, while e.g. a microstate in constrast is
very flat in this regard. There is convergence between the sales district on one and the
city, country, country attributes on the other side, for they both determine the continent
attribute. Only the most important attributes for the customer dimensions are depicted,
in real world additional attributes might be added.

10

The surface dimension has two multiple arcs for vein and type. This is due to the fact
that a product (mostly blocks, but occasionally also slabs) can have patterns of two,
three or even more types. Likewise, it might have veins of different colors, intensity etc.

The type attribute does only weakly functionally determine the vein atrribute.

date

quarter

month

day

year

semester

addressname

customer
...

city

county/district/province

state/region

country/nation

sales district

contact person

continent

surface

vein color
vein form
vein intensity

type

vein

product

type

SALE
quantity
profit

addressname

customer
...

city

county/district/province

state/region

country/nation

sales district

contact person

continent

surface

vein color
vein form
vein intensity

type

vein

product

type

date

quarter

month

day

year

semester

reserve sto
re

INVENTORY

av
g,

 m
in

, m
ax

quantity

name

kind

...

last revision

date

quarter

month

day

year

semester

transport ex
ca

va
te

surface

vein color
vein form
vein intensity

type

vein

salaryname

worker

job grade

...

name

opening

gallery

depth

height

position

EXTRACTION

weight
width (AVG, MIN, MAX)
height (AVG, MIN, MAX)
diameter (AVG, MIN, MAX)
flawed (AVG, MIN, MAX) machine

Figure 2: The DFM for the SALE fact

11

2.3 The Inventory Fact

There isn’t much left to say about the inventory fact, for it strongly resembles the sale
fact (which is a bit worrying in terms of example chosen).

The fact has two shared date dimensions, that represent the time a product has been
stored and reserved, respectively.

The quantity measure is non-additive with respect to the date dimension as far as the
store role is concerned.

The date dimension in the reserve role is optional (i.e. an optional arc) since not all
products are reserved.

date

quarter

month

day

year

semester

addressname

customer
...

city

county/district/province

state/region

country/nation

sales district

contact person

continent

surface

vein color
vein form
vein intensity

type

vein

product

type

SALE
quantity
profit

addressname

customer
...

city

county/district/province

state/region

country/nation

sales district

contact person

continent

surface

vein color
vein form
vein intensity

type

vein

product

type

date

quarter

month

day

year

semester

reserve sto
re

INVENTORY

av
g,

 m
in

, m
ax

quantity

name

kind

...

last revision

date

quarter

month

day

year

semester

transport ex
ca

va
te

surface

vein color
vein form
vein intensity

type

vein

salaryname

worker

job grade

...

name

opening

gallery

depth

height

position

EXTRACTION

weight
width (AVG, MIN, MAX)
height (AVG, MIN, MAX)
diameter (AVG, MIN, MAX)
flawed (AVG, MIN, MAX) machine

Figure 3: The DFM for the INVENTORY fact

12

3 Logical Design

We ”resist normalization urges” [KR02] and limit ourselves to star schemas (and so
escape the pains of drawing snowflake schemas). In the following, the star schemas for
our simple examples are depicted. The abbreviations (FK) and (PK) after the measures
and attributes stand for foreign key and primary key, respectively.

3.1 Mapping Multiple Arcs

Except for the dimensions with multiple arcs (machine, worker, product, surface, logical
integration is streighforward. As for those others, I decided to use bridge tables. Initially
I did consider ”inlining” by using arrays or hstore (Postgres) in the later physical design
step. However, it is very hard to maintain summarizability using e.g hstore because
support for range queries on hstore values for specific keys is fairly limited. And so it
happened that bridge tables were used for all multiple arcs relations. To keep summariz-
ability, the bridge tables for the surface type and veins need a weight field. The machine
and worker bridge tables do not; for it is assumed that weights are evenly distributed
amongst workers and machines.

3.2 Snowflake against will

Although a star schema was chosen, the schemas depicted below look suspiciously like a
snowflake schema. This is due to the bride tables, that were used to map multiple arcs.
This is, of course, not without consequence. Consider a query that is only interested
in the vein color attribute, it cannot be carried out without a join, possibly inhibiting
performance. In theory, multiple arcs could be ”unfold”. This would considerably in-
crease the size of the dimension tables, which would however, considering that most of
the data is kept in the fact tables anyway, be negligible. Unfortunately, there is, as far
as the author is aware, no support for this in any DBMS.

3.3 The time dimension anomaly

It seems to be usual to model the time dimension linearly in the conceptual design; that
means we have for instance a functional dependency day → month, which is of course
utter nonsense unless one would e.g. store the days as Julian Day Numbers. Then still,
however, the indirect functional dependency day → year would be invalid. This could
be solved by storing days since epoch (e.g. days since January 1970), but the day field
should be easily readable. Now, after having it done the wrong way, I would break up
the usual dependencies and make the bottom date attribute fully determine all the other
attributes in the dimension. Currently, however, the day attribute has been logically
modelled to use Julian Day Numbers.

13

3.4 The Extraction Fact

extraction fact

weight
width
height
diameter
flawed
machine group key (FK)
worker group key (FK)
gallery key (FK)
position key (FK)
surface key (FK)

gallery dimension
name
opening

transportation date
dimension

transportation date key
(PK)
transportation day
transportation month
transportation quarter
transportation semester
transportation year

excavation date
dimension

excavation date key (PK)
excavation day
excavation month
excavation quarter
excavation semester
excavation year

surface dimension

surface type group key (FK)
vein group key (FK)

surface type group
dimension

surface type key (PK)

surface type bridge

surface type group key (FK)
surface type (FK)
weight

surface type
dimension

surface key (PK)
type key (PK)
type name

vein group dimension

vein group key (PK)

vein bridge

vein group key (FK)
vein key (FK)
weight

vein dimension

vein key (PK)
vein color
vein angle
vein intensity
vein type

position dimension

position key (PK)
depth
height

machine group
dimension

machine group key (PK)

worker group
dimension

worker group key (PK)

machine bridge

machine group key (FK)
machine key (FK)

machine dimension

machine key (PK)
name
model
last revison
type
. . .

worker bridge

worker group key (FK)
worker key (FK)

worker dimension

worker key (PK)
name
surname
job grade
salary
. . .

Figure 4: The logical schema for the extraction fact along with its dimensions.

14

3.5 The Sale Fact

sale fact

quantity
profit
date key (FK)
customer key (FK)
product key (FK)

date dimension

date key (PK)
day
month
quarter
semester
year

surface dimension

surface type group key (FK)
vein group key (FK)

surface type group
dimension

surface type key (PK)

surface type bridge

surface type group key (FK)
surface type (FK)
weight

surface type
dimension

surface key (PK)
type key (PK)
type name

vein group dimension

vein group key (PK)

vein bridge

vein group key (FK)
vein key (FK)
weight

vein dimension

vein key (PK)
vein color
vein angle
vein intensity
vein type

product dimension

product key (PK)
surface key (FK)
type

customer dimension

customer key (PK)
contact person
name
surname
address
sales district
city
county
state
nation
continent

Figure 5: The logical schema for the simpler sales fact.

15

3.6 The Inventory Fact

inventory fact

quantity
store date key (FK)
reservation date key (FK)
customer key (FK)
product key (FK)

storage date dimension

storage date key (PK)
storage day
storage month
storage quarter
storage semester
storage year

reservation date
dimension

reservation date key (PK)
reservation day
reservation month
reservation quarter
reservation semester
reservation year

surface dimension

surface type group key (FK)
vein group key (FK)

surface type group
dimension

surface type key (PK)

surface type bridge

surface type group key (FK)
surface type (FK)
weight

surface type
dimension

surface key (PK)
type key (PK)
type name

vein group dimension

vein group key (PK)

vein bridge

vein group key (FK)
vein key (FK)
weight

vein dimension

vein key (PK)
vein color
vein angle
vein intensity
vein type

product dimension

product key (PK)
surface key (FK)
type

customer dimension

customer key (PK)
contact person
name
surname
address
sales district
city
county
state
nation
continent

Figure 6: The logical schema for the inventory fact, all too similar to the sale fact.

3.7 Simple Queries

We give queries to answer two simple business questions:

3.7.1 Extraction Fact

What is the total amount of stone extracted (volume and mass) in the year 2008 for
each gallery ?

SELECT gallery.name,
date.year,
SUM(height * width * diameter) AS volume,

16

SUM(weight) AS mass
FROM extraction, date, gallery
WHERE extraction.excavation_date_id = date.id
AND extraction.gallery_id = gallery.id
AND date.year = 2008
GROUP BY date.year, gallery.name

id date year semester quartal month day

0 2007-11-26 2007 2 4 NOV 330

1 2008-03-08 2008 1 2 MAR 068

2 2008-04-26 2008 1 2 APR 117

3 2008-05-07 2008 1 2 MAY 128

4 2009-01-25 2009 1 1 JAN 025

5 2009-10-01 2009 2 4 OCT 274

6 2010-01-04 2010 1 1 JAN 004

7 2010-05-03 2010 1 2 MAY 123

8 2010-08-10 2010 2 3 AUG 222

9 2010-09-24 2010 2 4 SEP 267

10 2011-11-01 2011 2 4 NOV 305

Table 3: A sample date dimension table – all data is fictional

17

id name opening

0 G1 2007-07-22

1 G2 2008-03-31

2 G3 2008-04-14

3 G4 2008-07-08

4 G5 2009-03-04

5 G6 2009-04-06

6 G7 2011-08-02

7 G8 2011-06-02

8 G9 2011-07-03

9 G10 2012-04-01

10 G11 2012-05-10

Table 4: A sample gallery dimension table – opening dates are fictional

18

e
x
c
a
v
a
ti

o
n

d
a
te

id

tr
a
n

sp
o
rt

a
ti

o
n

d
a
te

id

g
a
ll
e
ry

id

p
o
si

ti
o
n

id

m
a
ch

in
e

g
ro

u
p

id

w
o
rk

e
r

g
ro

u
p

id

su
rf

a
c
e

id

w
id

th

h
e
ig

h
t

d
ia

m
e
te

r

w
e
ig

h
t

9 7 9 16 0 2 14 2.89 1.25 1.40 13.97

7 9 7 9 3 1 24 2.68 1.26 1.17 11.00

5 8 9 5 2 3 9 2.93 1.25 1.22 12.41

3 3 9 14 2 4 3 2.66 1.49 1.39 15.39

1 3 5 9 3 4 28 2.79 1.54 1.34 15.94

5 4 2 16 2 4 15 2.66 1.49 1.42 15.63

6 3 1 5 1 4 21 2.71 1.34 1.16 11.70

9 4 7 4 0 4 5 2.68 1.27 1.32 12.47

8 7 8 3 2 3 2 2.75 1.45 1.20 13.27

6 7 7 14 3 1 13 2.85 1.40 1.34 14.91

Table 5: A sample extraction fact table – all data is fictional, although realistic. Width,
height and diameter is given in meters, weight in tons.

Year Name Volume Mass

2008
G10 5.598 15.40

G6 5.798 15.94

Table 6: The result set for the query above.

3.7.2 Sale Fact

What is the profit made on the north-american market for the last three years ?

19

id first name last name address sales district city county state country continent

0 Laila Fend 57 St Georges Hill ANGLO Crawcrook and Greenside Ward Tyne and Wear NULL UK EUROPE

1 Corrinne Jaret 2150 Morley St ANGLO Dee Ward Dumfries and Galloway NULL UK EUROPE

2 Margurite Loperfido 218 Greenbank Drive ANGLO Devizes Wiltshire NULL UK EUROPE

3 Pok Molaison 211 Hobart St ANGLO Newquay Cornwall NULL UK EUROPE

4 Ahmad Alsaqri 21 Pickwick St ANGLO Sutton cum Duckmanton Derbyshire NULL UK EUROPE

5 Murray Fode 59 W Century Rd ANGLO Pointe-Claire NULL QC CA NORTH AMERICA

6 Lavelle Lillywhite 5 S Taylor Ave ANGLO La Malbaie NULL QC CA NORTH AMERICA

7 Truman Mondale 1657 N Green St ANGLO Peterborough NULL ON CA NORTH AMERICA

8 Lea Steinhaus 80 Maplewood Dr 34 ANGLO Bradford NULL ON CA NORTH AMERICA

9 Olga Adessa 8507 Upland St ANGLO Burlington NULL ON CA NORTH AMERICA

10 Stephaine Barfield 47154 Whipple Ave Nw ANGLO Gardena Los Angeles CA US NORTH AMERICA

11 Fannie Lungren 17 Us Highway 111 ANGLO Round Rock Williamson TX US NORTH AMERICA

12 Kasandra Semidey 369 Latham St 500 ANGLO Saint Louis Saint Louis City MO US NORTH AMERICA

13 Carey Dopico 87393 E Highland Rd ANGLO Indianapolis Marion IN US NORTH AMERICA

14 Yuki Whobrey 1 State Route 27 ANGLO Taylor Wayne MI US NORTH AMERICA

15 Isreal Calizo 2 Landmeier Rd ANGLO Wombeyan Caves NULL NS AU AUSTRALIA

16 Coletta Thro 64865 Main St ANGLO North Fremantle NULL WA AU AUSTRALIA

17 Carman Robasciotti 4 Spinning Wheel Ln ANGLO Granya NULL VI AU AUSTRALIA

18 Terina Wildeboer 462 Morris Ave ANGLO Seddon NULL VI AU AUSTRALIA

19 Leatha Block 6926 Orange Ave ANGLO Two Rocks NULL WA AU AUSTRALIA

Table 7: A sample customer dimension table with english-speaking customers – all data is fictional

20

d
a
te

id

p
ro

d
u

c
t

id

c
u

st
o
m

e
r

id

q
u

a
n
ti

ty

p
ro

fi
t

3 4 13 5 83227

1 1 5 371 79598

6 0 5 350 71346

4 4 6 264 66579

8 0 7 15 20067

9 1 3 110 60668

8 6 3 251 83514

0 6 4 99 83287

9 0 11 11 104433

8 4 5 68 56410

Table 8: A sample sale fact table – all data is fictional.

SELECT customer.continent, date.year, SUM(profit)
FROM sale, date, customer
WHERE sale.customer_id = customer.id
AND sale.date_id = date.id
AND date.year IN (2009, 2010)
AND customer.continent = ’NORTH_AMERICA’
GROUP BY customer.continent, date.year

Continent Year Profit

North America
2009 66579

2010 252256

Table 9: The result set for the query above.

21

4 Physical Design

4.1 Simple ROLAP Queries

SELECT date.year, date.semester, date.quartal,
SUM(height * width * diameter) AS volume, SUM(weight) AS mass

FROM extraction, date
WHERE extraction.excavation_date_id = date.id
GROUP BY ROLLUP(date.year, date.semester, date.quartal)

A note about Postgres Unfortunately, Postgres has at this point in time no support
for ROLAP queries; neither ROLLUP nor CUBE groupings are supported, which is
surprising, considering that even MySQL has support (although very basic) for these
kind of queries. What remains is the possibility to ”paraphrase” ROLLUP queries
by creating the union of multiple subqueries. The above query would look then as
follows. Note that UNION ALL was used, as the UNION keyword defaults to UNION
DISTICT, which would induce unnecessary processing (e.g. sorting). Obviously, this
does not perform as well as a corresponding ROLLUP would. Also, controlling the
order in which rows should appear seems to be tricky.

SELECT date.year as year,
date.semester as semester,
date.quartal as quartal,
SUM(height * width * diameter) AS volume,
SUM(weight) AS mass

FROM extraction, date
WHERE extraction.excavation_date_id = date.id
GROUP BY date.year, date.semester, date.quartal
UNION ALL
SELECT date.year,

date.semester,
NULL as "quartal",
SUM(height * width * diameter) AS volume,
SUM(weight) AS mass

FROM extraction, date
WHERE extraction.excavation_date_id = date.id
GROUP BY date.year, date.semester
UNION ALL
SELECT date.year,

NULL AS "semester",
NULL AS "quartal",
SUM(height * width * diameter) AS volume,
SUM(weight) AS mass

FROM extraction, date
WHERE extraction.excavation_date_id = date.id
GROUP BY date.year
UNION ALL
SELECT NULL AS year,

22

NULL AS "semester",
NULL AS "quartal",
SUM(height * width * diameter) AS volume,
SUM(weight) AS mass

FROM extraction, date
WHERE extraction.excavation_date_id = date.id
ORDER BY year, semester, quartal;

23

year semester quartal volume mass

2007 1 1 96.188185836 264.505

2007 1 2 225.807796467 620.974

2007 2 3 383.097466294 1053.507

2007 2 4 230.967756251 635.163

2007 1 321.995982303 885.479

2007 2 614.065222545 1688.670

2007 936.061204848 2574.149

2008 1 1 333.987827350 918.463

2008 1 2 275.250892176 756.923

2008 2 3 183.719783027 505.209

2008 2 4 237.817976417 653.965

2008 1 609.238719526 1675.386

2008 2 421.537759444 1159.174

2008 1030.776478970 2834.560

2009 1 1 217.306085913 597.578

2009 1 2 311.630122536 857.038

2009 2 3 242.391642842 666.621

2009 2 4 259.711394078 714.202

2009 1 528.936208449 1454.616

2009 2 502.103036920 1380.823

2009 1031.039245369 2835.439

2010 1 1 235.904361442 648.704

2010 1 2 239.787009053 659.440

2010 2 3 292.159687454 803.368

2010 2 4 163.936097149 450.822

2010 1 475.691370495 1308.144

2010 2 456.095784603 1254.190

2010 931.787155098 2562.334

2011 1 1 105.546086406 290.233

2011 1 2 241.993527613 665.492

2011 2 3 215.725887074 593.263

2011 2 4 280.632694755 771.739

2011 1 347.539614019 955.725

2011 2 496.358581829 1365.002

2011 843.898195848 2320.727

4773.562280133 13127.209

Table 10: The result set for the query given above. Empty cells denote NULL values.

24

Again, this query cannot be run on Postgres. The use of the GROUPING function
makes this query even harder to translate into something Postgres can understand.

SELECT CASE
WHEN GROUPING(date.year)=1 THEN

’all years’
ELSE

date.year
END,
CASE
WHEN GROUPING(date.semester)=1 THEN

’all semesters’
ELSE

date.semester
END,
CASE
WHEN GROUPING(date.quartal)=1 THEN

’all quartals’
ELSE

date.quartal
END,
SUM(height * width * diameter) AS volume,
SUM(weight) AS mass

FROM extraction, date
WHERE extraction.excavation_date_id = date.id
GROUP BY ROLLUP(date.year, date.semester, date.quartal)

year semester quartal volume mass

2007 1 1 96.188185836 264.505

2007 1 2 225.807796467 620.974

2007 2 3 383.097466294 1053.507

2007 2 4 230.967756251 635.163

2007 1 all quartals 321.995982303 885.479

2007 2 all quartals 614.065222545 1688.670

2007 all semesters all quartals 936.061204848 2574.149

. . .

all years all semesters all quartals 4773.562280133 13127.209

Table 11: The result set for the query given above. The NULL values have been replaced
with a describtive value.

25

5 Advanced Querying

5.1 Ranking Query

In each sales district, financial resources (e.g for advertising) are distributed evenly across
its countries; however, if sales in a country were good it gets an additional bonus. In
order not to disadvantage any sales district, the bonuses depend only on how well the
other countries in the same district did. The countries in a district are sorted by total
profit, then the coutries in the top 30% get a ”high” bonus, the following top 30% a ”low”
bonus and the remaining lower 30% get no bonus at all. The following query helps the
management to assign boni to the countries in the sales district for the english-speaking
countries. The best and worst profit sale is removed to expunge outliers and increase
fairness.

Listing 1: For each country in the ’ANGLO’ sales district, list the minimum and maxi-
mum profit, and its ”bonus category”.

SELECT customer.country,
SUM(sale.profit),
MIN(sale.profit),
MAX(sale.profit),
NTILE(3) OVER (

ORDER BY (SUM(sale.profit) - MIN(sale.profit) - MAX(sale.profit))
)

FROM sale, customer
WHERE sale.customer_id = customer.id
AND customer.sales_district = ’ANGLO’
GROUP BY customer.country;

country total profit minimum profit maximum profit bonus category

AU 13578425.000 10700.000 108674.000 1

CA 14576231.000 10001.000 109854.000 1

US 15718433.000 10348.000 109118.000 2

UK 15900180.000 10120.000 109702.000 3

Table 12: The result set for the query given above. The United Kingdom will get a
”high” bonus, the U.S. a ”low” bonus.

5.2 Windowing Query

Consider the query above. To distribute bonuses in a fair fashion, we removed the best
and worst profit sale. The management decides that that’s not enough and want’s me

26

to remove the best and worst 15% of the sales.

Listing 2: Same as above, but outliers are removed more reliably.

CREATE TEMPORARY VIEW sale_centile AS
SELECT customer.country,

sale.profit,
NTILE(100) OVER (

PARTITION BY customer.country ORDER BY sale.profit
) AS centile

FROM sale, customer
WHERE sale.customer_id = customer.id
AND customer.sales_district = ’ANGLO’;

SELECT customer.country,
SUM(sale.profit),
MIN(sale.profit),
MAX(sale.profit),
NTILE(3) OVER (ORDER BY (

SUM(sale.profit) -
(SELECT SUM(profit) FROM sale_centile WHERE centile < 15 OR centile > 85))

)
FROM sale, customer
WHERE sale.customer_id = customer.id
AND customer.sales_district = ’ANGLO’
GROUP BY customer.country;

country total profit minimum profit maximum profit bonus category

AU 13578425.000 10700.000 108674.000 1

CA 14576231.000 10001.000 109854.000 1

US 15718433.000 10348.000 109118.000 2

UK 15900180.000 10120.000 109702.000 3

Table 13: The result set for the query given above. Nothing changed, because there seem
to have been no outliers.

5.3 Period-to-Period Query

The MARMOMACC is the biggest international fair for operators in the marble sector.
Ever since 2009 the Covelano Marmi Srl. is represented with a stand. It is by far the
most important advertising event of the year. The management would like to know the
impact of this event on the number of sales. Are sales notably increasing ? Is it worth

27

putting much money and effort into this event ? We need to write a query that com-
pares the number of sales made within 100 days before the event with the sales made
100 events after it.

Since each year MARMOMACC takes place at slightly different days we first create
a temporary table of the begin and end dates of the fair for the last couple of years.

Year Begin End

2009 30-09-2009 03-10-2009

2010 29-09-2010 02-10-2010

2011 21-09-2011 24-09-2011

2012 26-09-2012 29-09-2012

2013 25-09-2013 28-09-2013

Listing 3: For each

CREATE TEMPORARY VIEW before AS
SELECT date.year as year, COUNT(*) AS count

FROM date, sale
WHERE sale.date_id = date.id
AND date.date BETWEEN (

SELECT begin_date
FROM marmomacc_dates
WHERE year = date.year

) - 100
AND
(
SELECT begin_date
FROM marmomacc_dates
WHERE year = date.year

)
GROUP BY year;

CREATE TEMPORARY VIEW after AS
SELECT date.year as year, COUNT(*) AS count
FROM date, sale
WHERE sale.date_id = date.id
AND date.date BETWEEN (

SELECT begin_date
FROM marmomacc_dates
WHERE year = date.year

28

)
AND
((
SELECT begin_date
FROM marmomacc_dates
WHERE year = date.year

) + 100)
GROUP BY year;

SELECT DISTINCT date.year, before.count, after.count
FROM sale, date, before, after
WHERE sale.date_id = date.id
AND after.year = date.year
AND before.year = date.year;

Year Sales before Sales afterwards

2009 53 56

2010 53 36

2011 43 55

2012 50 40

2013 50 10

Table 14: The result set for the query given above. Our sample data does not reflect
reality.

5.4 Materialized Views

We choose three queries that might be executed frequently. For the sake of simplicity,
we reduce one-to-many to one-to-one relations, more specifically we assume that the
extraction fact has a one-to-one sort dimension and an additional vein angle degenerate
dimension that is stored in the fact table as a measure. Also, additional dimensions have
been removed or simplified, see Figure 7

29

Figure 7: The simplified DFM for the EXTRACTION fact

1. What is the amount of stone excavated per gallery and year, semester and quartal.
The query is similar to a previous one. This query takes ca. 14ms to execute with
10’000 tuples in the fact table. The grouping is (year).

SELECT date.year,
SUM(weight) AS amount

FROM extraction, date
WHERE extraction.excavation_date_id = date.id
GROUP BY date.year
ORDER BY date.year;

2. What is the amount of stone excavated per sort and quartal (of a specific year)
? Executing this query is surprisingly fast; about 5 milliseconds for 10’000 tuples.
The only grouping is (quartal, sortname).

SELECT date.quartal,
sort.name as sort,
SUM(extraction.weight) AS amount

FROM extraction, date, sort
WHERE extraction.excavation_date_id = date.id
AND extraction.sort_id = sort.id
AND date.year = 2009
GROUP BY date.quartal, sort.name
ORDER BY date.quartal, sort.name;

3. It important for the company to know the angles of the vein patterns because two
different blocks can only be sold if angles more or less match, so when tiles are
cut from the blocks there is a uniform pattern. Thus, the following query might
be of interest: What is the amount of stone exacated per semester (of a specific

30

year) grouped by vein angle ? The vein angle is rounded to the nearest multiple
of 10. Query execution time was around 5 milliseconds. The only grouping is
(semester, veinangle).

SELECT date.semester,
ceil(vein_angle / 10) * 10 AS angle,
SUM(extraction.weight) AS amount

FROM extraction, date
WHERE extraction.excavation_date_id = date.id
AND date.year = 2009
GROUP BY date.semester, angle
ORDER BY date.semester, angle;

{year, semester, sort, angle}

{year, quartal, sort}{year} {year, semester, angle}

Figure 8: The lattice representing depedencies between sets of attributes that are suit-
able for materialization to improve the execution time of the queries above.
Note that we have quartal > semester.

Getting Physical Fortunately, Postgres does support materialized views since version
9.3. The following piece of SQL creates the view and executing it takes over 200 mil-
liseconds. The following view can be used by all three queries.

CREATE MATERIALIZED VIEW mv1 AS
SELECT date.year,

date.quartal,
sort.name,
extraction.vein_angle,
SUM(extraction.weight) AS amount

FROM extraction, date, sort
WHERE extraction.excavation_date_id = date.id
AND extraction.sort_id = sort.id
GROUP BY date.year, date.quartal, sort.name, extraction.vein_angle
ORDER BY date.year, date.quartal, sort.name;

We can rewrite the previous queries to make use of the materialized view. Unfortunately,
Postgres does not support automatic query rewriting, so we do it by hand.

1. SELECT year,
SUM(amount)

FROM mv1
GROUP BY year
ORDER BY year;

31

2. SELECT quartal,
name as sort,
SUM(amount)

FROM mv1
WHERE year = 2009
GROUP BY quartal, sort
ORDER BY quartal, sort;

3. SELECT ceil(quartal / 2.0) AS semester,
ceil(vein_angle / 10) * 10 AS angle,
SUM(amount)

FROM mv1
WHERE year = 2009
GROUP BY semester, angle
ORDER BY semester, angle;

As Figure 8 shows, we might be able to reduce the query execution time further by
creating additional materialized views. We will now create all materialized views and
later discuss whether it was worth doing so. The following SQL code creates all different
views.

CREATE MATERIALIZED VIEW mv2 AS
SELECT date.year,

SUM(extraction.weight) AS amount
FROM extraction, date
WHERE extraction.excavation_date_id = date.id
GROUP BY date.year
ORDER BY date.year;

CREATE MATERIALIZED VIEW mv3 AS
SELECT date.year,

date.quartal,
sort.name,
SUM(extraction.weight) AS amount

FROM extraction, date, sort
WHERE extraction.excavation_date_id = date.id
AND extraction.sort_id = sort.id
GROUP BY date.year, date.quartal, sort.name
ORDER BY date.year, date.quartal, sort.name;

CREATE MATERIALIZED VIEW mv4 AS
SELECT date.year,

date.semester,
extraction.vein_angle,
SUM(extraction.weight) AS amount

FROM extraction, date, sort
WHERE extraction.excavation_date_id = date.id
GROUP BY date.year, date.semester, extraction.vein_angle
ORDER BY date.year, date.semester;

32

The following table shows the exeution time for the various query depending on whether
they did make use of the materialized views or not or which view they used.

Query No mat. view Generic mat. view Specific mat. view

Query 1 13 5 0.4

Query 2 5 2 0.7

Query 3 5 4 1.6

Table 15: Comparison of the execution times (in ms.) for the example queries on different
materialized views. The generic materialized view is the view that all queries
can take advantage of, the specific materilazed view is the view that only this
specific query can make use of.

Mat. View Size

mv1 (Generic) 7621

mv2 (for Query 1) 7

mv3 (for Query 2) 196

mv4 (for Query 3) 2438

Table 16: Comparison of the materialzed view sizes.

Comparing result with theoretic expectations Given the table sizes in Table 16 we
can analyze the experimental data. It’ clear that the greedy algorithms presented in the
lectures would choose mv2 first, then mv3, finally mv4. In practive, however, it’s worth
considering creating m4 instead of m3, given that the improvement in execution time
for the 3rd query is almost as good as for the 2nd query; this would depend on how often
the respective queries are executed. Generally, execution times are farily short, given
the relatively small amount of data. In this specific scenario it might be perfectly fine
to not create any materialized views at all.

33

References

[GR09] Matteo Golfarelli and Stefano Rizzi. Data Warehouse Design: Modern Prin-
ciples and Methodologies. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
2009.

[KR02] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling. John Wiley & Sons, Inc., New York, NY, USA,
2nd edition, 2002.

[LS97] Hans-Joachim Lenz and Arie Shoshani. Summarizability in olap and statistical
data bases. In Proceedings of the Ninth International Conference on Scientific
and Statistical Database Management, SSDBM ’97, pages 132–143, Washington,
DC, USA, 1997. IEEE Computer Society.

[Riz08] Stefano Rizzi. Conceptual Modeling Solutions for the Data Warehouse. 2008.

34

	Domain, Requirements and Modelling
	Business Process Modelling
	Dimensions and Bus Matrix
	Queries
	Relevant Measures, Granularity and Additivity

	Conceptual Design
	The Extraction Fact
	The Sale Fact
	The Inventory Fact

	Logical Design
	Mapping Multiple Arcs
	Snowflake against will
	The time dimension anomaly
	The Extraction Fact
	The Sale Fact
	The Inventory Fact
	Simple Queries
	Extraction Fact
	Sale Fact

	Physical Design
	Simple ROLAP Queries

	Advanced Querying
	Ranking Query
	Windowing Query
	Period-to-Period Query
	Materialized Views

