
A RESEARCH TALK

PART I:
EXTENDING A METAMODEL FOR
FORMALIZATION OF DATA
WAREHOUSE REQUIREMENTS

Natalija Kozmina, Laila Niedrite, Janis Zemnickis

University of Latvia, Faculty of Computing

Introduction
• We focus our research on applying demand-driven

(more precisely, user-driven) methodology to construct a
DW conceptual model

• We interpret DW information requirements gained from
interviews as indicators

•  Indicator definition from BABOK® Guide:
An indicator identifies a specific numerical measurement for
a goal, impact, output, activity, or input. Each factor of
interest has at least one indicator to measure it properly, but
some may require several.

Background and Questions of Interest

Current Situation

•  DW of the University of Latvia
accumulates data to reflect
diverse indicators
•  Student enrolment, strategic

indicators, staff workload, user
activity in CMS, etc.

•  Regular demand from client’s
side for DW reports
•  Over 150 reports and growing

•  Interest in dashboards

Questions

•  How to structure and
systematize DW information
requirements?

•  Which reports and schema

elements to incorporate into
dashboards?

Formal
requirement
repository

Pre-schema

Data
warehouse
conceptual

model

Copy pre-schema
elements

Reports and
Dashboards

Analyze
priorities

 and
hierarchies

GUI for formal
requirement

input

Enter
requirements

Requirement
mapping

component

Handle evolving
requirements

Graph DB
component

PGA

Provide terms
and synonims

Pre-schema evaluation
and improvement

Developer

Pre-schema
acceptance

Client

Deriving a Conceptual Model of a DW
from Information Requirements

Requirements in
natural language

Requirement formalization
metamodel

Formalized requirements
(indicators)

Requirement Formalization Metamodel
Initial version of the

metamodel
Based on over 330 indicators
from business field

•  Measurement perspectives:
customer focus, environment &
community, employee
satisfaction, finance, internal
process, and learning & growth

•  Source: Indicator database
from “Key Performance
Indicators: Developing,
Implementing,
and Using Winning KPIs”
by Parmenter, D. (2010)

Extended version of the
metamodel

Based on over 150 indicators
from the real DW project of the
University of Latvia

•  Indicator groups: student
enrolment, strategic
indicators, staff workload,
user activity in CMS, staff/
student publications, etc.

•  Source: Indicators for
existing reports developed
with MicroStrategy tools

Case Study & Findings
•  We analyzed sentences that express indicators in natural language

with an aim to discover common patterns
•  Initial version of the metamodel:

A set of principles was worked out that serves to translate the
informal requirements in natural language to a state that is
compatible with the requirement formalization metamodel
•  calls → count (call), number of visits → count (visit),
•  listing of customers → show customers,

total income → sum (income), etc.
•  Extended version of the metamodel:

Indicators were reformulated, and checked for compliance with
the initial metamodel – around 14% of indicators did not comply

•  As a result, new classes and relationships between classes were
added to the requirement formalization metamodel

Requirement Formalization Metamodel

Simple Requirement

Typified Condition

Condition Type

value = {"where"}

Condition

Simple Condition

Complex Condition

Expression

Logical Operator

value = {"or",
 "and",
 "not"}

1 1

Operation
Object

Complex Operation Action

* 1..*

Qualifying Data

name : string

Quantifying Data

name : string

1

1..*

2

Constant

2 1

{ ordered }

1

0..1

1

1

1

1

1

Refinement

value = {"show"}

Aggregation

value = {"count", "sum",
 "average", ...}

Complex Requirement

2

1
1

Arithmetical Operator

value = {+, -, *, /}

Complex Expression

Simple Expression

1

1

2

Theme

name : string

Priority

value = {"must", "should",
 "could", "won't"}

Group

name : string

{XOR}

1..*

1

1

1

{XOR}

1 1..*

1

1..*

11..*

Requirement

isObsolete : Boolean
isUnprocessed : Boolean

Comparison

value = {>, <, >=, <=, =, "is"}

Stakeholder

Business Process

*

1

*

1

Simple Requirement

Typified Condition

Condition Type

value = {"where"}

Condition

Simple Condition

Complex Condition

Expression

Logical Operator

value = {"or",
 "and",
 "not"}

1 1

Operation
Object

Complex Operation Action

* 1..*

Qualifying Data

name : string

Quantifying Data

name : string

1

1..*

2

Constant

2 1

{ ordered }

1

0..1

1

1

1

1

1

Refinement

value = {"show"}

Aggregation

value = {"count", "sum",
 "average", ...}

Complex Requirement

2

1
1

Arithmetical Operator

value = {+, -, *, /}

Complex Expression

Simple Expression

1

1

2

Theme

name : string

Priority

value = {"must", "should",
 "could", "won't"}

Group

name : string

{XOR}

1..*

1

1

1

{XOR}

1 1..*

1

1..*

11..*

Requirement

isObsolete : Boolean
isUnprocessed : Boolean

Comparison

value = {>, <, >=, <=, =, "is"}

Stakeholder

Business Process

*

1

*

1

Simple Requirement

Typified Condition

Condition Type

value = {"where"}

Condition

Simple Condition

Complex Condition

Expression

Logical Operator

value = {"or",
 "and",
 "not"}

1 1

Operation
Object

Complex Operation Action

* 1..*

Qualifying Data

name : string

Quantifying Data

name : string

1

1..*

2

Constant

2 1

{ ordered }

1

0..1

1

1

1

1

1

Refinement

value = {"show"}

Aggregation

value = {"count", "sum",
 "average", ...}

Complex Requirement

2

1
1

Arithmetical Operator

value = {+, -, *, /}

Complex Expression

Simple Expression

1

1

2

Theme

name : string

Priority

value = {"must", "should",
 "could", "won't"}

Group

name : string

{XOR}

1..*

1

1

1

{XOR}

1 1..*

1

1..*

11..*

Requirement

isObsolete : Boolean
isUnprocessed : Boolean

Comparison

value = {>, <, >=, <=, =, "is"}

Stakeholder

Business Process

*

1

*

1

An Example of a Formalized Indicator
•  An indicator in natural language: “The ratio of master level graduates in the

University of Latvia in 2016, who are employers, has to be 10% of master level
graduates in the University of Latvia in 2015”

•  A formalized indicator:
“((count (graduate) where level=‘master’ and year=‘2016’ and status=‘employer’) /
(count (graduate) where level=‘master’ and year=‘2016’)) =
(10% * (count (graduate) where level=‘master’ and year=‘2015’))”

•  If there are such components as “%”, “percent”, “percentage”, or “ratio”, then it is
substituted by division of partial quantity by total quantity

•  A component to be measured is treated as an aggregated number of all its
occurrences: “graduates” → “count (graduate)”

•  “Has to” was interpreted as a request for equality → “=” sign
•  “10%” is a simple requirement that consists of a single constant value
•  Now it is possible also to evaluate the ratio (e.g. “has to be 10% …”)

Prioritization Technique
• Preferred approach – MoSCoW Analysis

•  A fast and straightforward approach with precisely defined priority
values

•  Doesn’t require complex calculations during re-prioritisation
process

•  Suitable for a small group of decision-makers

• Priority values in MoSCoW (from BABOK® Guide)
•  “Must”: must be satisfied in the final solution for it to be considered

a success
•  “Should”: should be included in the solution if it is possible
•  “Could”: desirable but not necessary
•  “Won’t”: will not be implemented in a given release, but may be

considered

Formal
requirement
repository

Pre-schema

Data
warehouse
conceptual

model

Copy pre-schema
elements

Reports and
Dashboards

Analyze
priorities

 and
hierarchies

GUI for formal
requirement

input

Enter
requirements

Requirement
mapping

component

Handle evolving
requirements

Graph DB
component

PGA

Provide terms
and synonims

Pre-schema evaluation
and improvement

Developer

Pre-schema
acceptance

Client

How requirement priority values are
propagated to pre-schema elements?

•  A pre-schema generation algorithm (PGA) can map elements of
formalized requirements to DW schema elements

•  If a schema element (e.g. a Study Program attribute) has multiple
priority values (e.g. must, could), then the one with the higher value
is assigned (i.e. must)

Which elements of the accepted pre-
schema to incorporate into dashboards?
•  Detect schema elements with highest priorities
•  Check if any of these elements build up data hierarchies

•  Examples of formalized requirements (with high priorities):
•  R1: show course count (user session occurrence)

 where user role = “student”
•  R2: show course category count (user session occurrence)

 where user role = “student”
•  R1 → R2 is a requirement hierarchy example, because schema

elements form a hierarchy Course → Course Category

•  A dashboard report would include the R2 requirement

Dashboard Example

Summary
•  A case study was conducted to test the existing requirement

formalization metamodel on a set of over 150 indicators for a real
currently operating DW project of the University of Latvia

•  Due to a specific structure of requirements that contain an evaluation
of ratios, the metamodel had to be restructured and extended with
some additional classes like themes, grouping, business
processes, stakeholders, and requirement priorities

•  MoSCoW analysis was chosen as the most suitable requirement
prioritization technique

•  Application of priorities was discussed in the context of dashboard
and report development

Details on Technical Implementation of iReq

iReq as a GUI for formalized requirement input
• A web-based tool with responsive design
•  iReq is written in PHP (Laravel framework)
• Requirement input: HTML, CSS, JavaScript

(Bootstrap, jQuery libraries)
• Data are stored in MariaDB
• Neo4j for the glossary

An Example of Glossary as Graph DB
Source DB structure à .CSV à Neo4j Graph DB

A Requirement Example in iReq Tool
• An example requirement from the Strategic Plan (2010-2020)
•  “Show information on student and academic staff ratio”

Another Example in iReq Tool
• An example requirement from the Student Council
•  “Show information on students from Riga that attend

lecturs held in Latvian”

ER Model of iReq Requirements Repository
•  Table classes stores data on all the elements of requirements
•  classes.type - Action, Simple Condition, Quantifying data, etc.

Future Work for iReq GUI
• Perform more GUI testing of the iReq tool to improve it

(e.g. add informal description of requirements)

• Provide an option for entering formalized requirements

manually as input expressions in order to parse with
some natural language processing component
(e.g. Xtext, SpaCy) and save(retrieve) them into(from)
a database correctly

• Make collected requirements fully or partially reusable

PART II:
DATA MODELLING FOR DYNAMIC
MONITORING OF VITAL SIGNS -
CHALLENGES AND PERSPECTIVES

Natalija Kozmina*, Emil Syundyukov*, Aleksejs Kozmins^

*University of Latvia, Faculty of Computing
^Accenture Latvia

Introduction
• An injury of the knee joint

(fractures, dislocations, ligament
tears) is one of the most
common regardless of the age

• A rehabilitation routine is aimed to minimize swelling,
return the range of movement, strengthen leg muscles by
taking into account limitations set by a physiotherapist

• A body sensor network of wireless sensors attached to a
patient provides a promising method to collect clinically
relevant information about knee function in everyday life

IoT – A Possible Solution?

Existing Similar Solutions: Riablo
• CoRehab: “Controlled exercises from clinics to home”
• Wearable sensor systems to collect biofeedback during

exercise sessions in form of a video game

Wearable Sensor System
•  A wearable sensor system for data acquisition and analysis
•  A framework to assess patients’ state of health, monitor dynamics in

real-time, and perform historical data analysis
•  To calculate the knee joint flexion/extension angle, a network consisting

of four 3-axial accelerometers is used

Mobile App to Gather Data

The Main Research Question
• RQ: Is there a data modelling approach to enhance

both real-time and historical data analysis?

• Search in Google Scholar:
(“data model”) AND (“post-traumatic” OR “post-operative”)
AND -“post-traumatic stress disorder” AND rehab*

• Results: 72 sources à no relevant work on data
modelling for rehabilitation procedures

Which Data Model to Choose?
• Relational data model?

Requires significant time and effort for adaptation

• Our check-list for the required data model:
•  Transactional data processing
•  Historical tracking and analytical processing feature
•  Flexibility in restructuring of the stored data according

to conceptual changes
•  Effort- and time-saving in development and support

• Data Vault (DV) model is designed for solving the
problems of flexibility and performance + a permanent
system of records ("all data, all the time")

Data Vault Structure – The Main Goals
①  Maximize resilience to change in the business

environment when storing historical data

②  Accommodate data regardless of their quality and of
their conformity to standard and business rules

③  Enable parallel loading so that very large
implementations can scale out without the need of
major redesign

Data Vault Structure – An Example
• Hubs are unique lists of

business keys that are used
to track and identify key
information

•  Links define relations
between objects

• Satellites contain descriptive
attributes of the objects

•  LOAD_DTS – load date timestamp
•  REC_SOURCE – record source

Structural Flexibility of the Data Model

‘*’ – extensibility
‘^’ – sub-process

Maintaining the Change History
• A new attribute is added
•  The whole history of

changes is being preserved
• Applying multi-instanced

approach to represent
satellites of the same hub

• Which satellite to use?
•  Time of creation
•  Treatment program

Starry Vault – Remarks

•  “…a data vault is not suitable for direct
multidimensional querying both for performance reasons
(it is not optimized for OLAP workloads) and because it is
hardly supported by OLAP front-ends”

•  “…our future work on this topic will be mainly focused on
investigating ad hoc techniques to support the data
scientist in discovering a multidimensional structure
even in situations in which the source data are poorly-
structured or schemaless, as is the case for document
databases.”

Starry Vault – Example and FD
•  An order is made by 1 customer and a customer belongs to 1 class
•  A customer normally issues several orders, each normally including

several lines

From FDs to an MD-Schema
•  The goal is to detect the FDs holding between hubs

related by a link, which can be achieved by detecting the
AFDs (TANE) involving the foreign keys in that link

• Draft md-schemata of the fact L_LineItem (left)
•  The enriched md-schemata of fact S_LineItem (right)

Technical Implementation Challenges
In our use-case, change management should be provided
not only at the development stage, but also to users

①  GUI for the transformations both in data structures
and mappings

②  Subject-oriented DDL and DML should let operate freely
with conceptual objects

③  An additional analytical layer over DV data for reporting
is needed + DML for querying over DV objects

Conclusions

•  The overall requirement for the data model is to give
maximum simplicity and flexibility to maintain:
•  Changes in the structure of all entities and inter-component

relations
•  History of all changes made
•  Analytical queries

• Data Vault (DV) could be adapted to frequent changes in
information requirements

• A prototype: wearable device +
a mobile app for health data acquisition
to collect, store, visualize data, and
communicate via notifications

Future Work – Empirical Studies
• Abnormal values in certain individuals/cohorts of

patients to prevent the risk of gaining a repeated trauma

• Positioning of the sensor nodes for more precise
harvesting of vital signs

• Supplementary sensors such as gyroscopes and more
advanced signal processing to boost performance

•  Tracing the wearable device workability in real-time by
recognizing bad data in real-time during exercise sessions

Motion Capture Data and
Fundamental Operations (disa.fi.muni.cz)

Motion Capture Data and
Fundamental Operations (disa.fi.muni.cz)

5 Levers to Reduce Healthcare Costs

PatientsLikeMe

