
Advanced Data Management Technologies
Unit 20 — Distributed Hash Tables

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

Acknowledgements: Some slides are from Paul Kryzanowski and Jeff Pang.

ADMT 2018/19 — Unit 20 J. Gamper 1/35

Outline

1 Introduction & Motivation

2 Linear Hashing
Centralized Solution
Distributed Solution

3 Consistent Hashing

ADMT 2018/19 — Unit 20 J. Gamper 2/35

Introduction & Motivation

Outline

1 Introduction & Motivation

2 Linear Hashing
Centralized Solution
Distributed Solution

3 Consistent Hashing

ADMT 2018/19 — Unit 20 J. Gamper 3/35

Introduction & Motivation

Locating Content in Distributed Systems

An important issue in P2P applications is content distribution

Where to distribute the data and how to locate the data?

Possible solutions for data/file sharing in P2P systems
Central server, e.g., Napster

Single point of failure and bottleneck

No central server, network flooding, e.g., Gnutella & Kazaa

Optimized to flood supernodes ... but it is still flooding

ADMT 2018/19 — Unit 20 J. Gamper 4/35

Introduction & Motivation

What is Wrong with Flooding?

Some nodes are not always up and some are slower than others

Gnutella & Kazaa dealt with this by classifying some nodes as “supernodes”
(called “ultrapeers” in Gnutella)

Poor use of network resources

Potentially high latency

Requests get forwarded from one machine to another
Back propagation (e.g., Gnutella design), where the replies go through the
same chain of machines used in the query, increases latency even more

Better access structures are needed to make P2P systems scalable!

ADMT 2018/19 — Unit 20 J. Gamper 5/35

Introduction & Motivation

Direct Access Structures

For point queries, file scan becomes too expensive, and direct access (or
index) structures are needed.

Index on a collection C of data

Maps the key of each object in C to its (physical) address
A set of pairs (k, a), where k is a key and a the address of an object
Object can be raw data, relational tuple, XML document, picture, video, etc.

Index supports also
range queries if keys can be linearly ordered

range(k1,k2) retrieves all keys (and their addresses) in that range

nearest neighbor queries if key space is associated to a metric (a distance
function)

Three main families of access structures:

hash tables: constant search complexity – O(1)
search trees: logarithmic search complexity – O(logN)
linear search: linear search complexity – O(N)

We are going to concentrate on hash tables

ADMT 2018/19 — Unit 20 J. Gamper 6/35

Introduction & Motivation

Distributed Hash-based Solutions

Aim is to create a peer-to-peer version of a (key , value) database

Distribute data over a large P2P network
Quickly find an item in the P2P network

a peer queries the database with a key
the database finds the peer that has the value
that peer returns the (key, value) pair to the querying peer

Make it efficient!

Avoid flooding

Basic (dictionary) operations

insertion: insert(k,v)

key search: v = search(k)

deletion: delete(k)

ADMT 2018/19 — Unit 20 J. Gamper 7/35

Introduction & Motivation

Hash-based Index in Centralized DB

Hash file structure for a data collection C consists of

a set of M disk buckets {b0, b1, . . . , bM−1} and
a memory-resident directory D, where D is an array with M cells, each
referring to one of the buckets

Hash function h determines the placement of objects in the M buckets

h maps each item I ∈ C to the range [0,M − 1]
Item I ∈ C is stored in bucket bj if j = h(I .A)

A is sometimes called the hash field

Properties

Hash function should
uniformly assigns
objects to buckets
M should be of the
order d |C |

bucket size
e

Very efficient for point
queries, but does not
support range search.

ADMT 2018/19 — Unit 20 J. Gamper 8/35

Introduction & Motivation

Distributed Hash-based Index – Naive Solution

Naive solution

assign each bucket of the hash file to one of the participating servers and
share hash function among all nodes

Suppose servers S0, . . . ,SN−1 are available

Hash function h(key) = h(key) mod N, where h maps the keys to integers.

Assign each key with hash value i to server Si

If a server SN is added, the hash function is modified to
h(key) = h(key) mod (N + 1)

ADMT 2018/19 — Unit 20 J. Gamper 9/35

Introduction & Motivation

Problems with Naive Solution

Distributed systems are (highly) dynamic

Data sets evolve over time
Nodes are added and deleted

If the hash function changes, the hash value of most objects changes too

Requires essentially a total rebuilding of the hash file
New function h has to be transmitted to all participants
During these changes, the old hash function is likely to result in an error
(difficult to guarantee consistency)

Hash directory (if stored centrally) provides a bottleneck as it needs to be
accessed for each request

ADMT 2018/19 — Unit 20 J. Gamper 10/35

Linear Hashing

Outline

1 Introduction & Motivation

2 Linear Hashing
Centralized Solution
Distributed Solution

3 Consistent Hashing

ADMT 2018/19 — Unit 20 J. Gamper 11/35

Linear Hashing Centralized Solution

Centralized Linear Hashing (LH)

Goal

An efficient hash structure for a very dynamic collection of data

Simple solution is to use overflow buckets

But problematic if there are many of them (linear scan!)

Basic idea of (centralized) linear hashing (LH)

Dynamic enlargement of hash directory D and hash function h
Reorganization of buckets

ADMT 2018/19 — Unit 20 J. Gamper 12/35

Linear Hashing Centralized Solution

Insert in Centralized LH

Insert a new data item: insert(k,v)

Buckets b0, . . . , bN−1

Split pointer p points to the bucket to be split next

Initially p = 0

Two hash functions (hn, hn+1) are used:

hn applies to the buckets bp, . . . , bN−1

hn+1 to all other buckets

When a bucket b overflows, the following steps are done:

an overflow bucket is linked from b to store the new item
bucket bp corresponding to p is split (typically diff. from overflow bucket!)
p is incremented by 1

When (the last) bucket bN−1 is split, hn is no longer used

Hash file “switches” to next level, i.e., hash functions (hn+1, hn+2) are used
p is reset to p = 0
(The number of buckets has doubled)

ADMT 2018/19 — Unit 20 J. Gamper 13/35

Linear Hashing Centralized Solution

Example of Centralized LH

Size of hash directory is 4, each bucket holds at most 4 objects

Actual hash functions (h2, h3): h2(k) = k mod 22, h3(k) = k mod 23

A new object 42 is inserted
into bucket b2

A new bucket is added to b2;
bucket b0 is split and h3 applies
to b0; p is set to 1

When b3 is split (p = 3), h3 applies to all buckets, hence the hash file
moves to the next level: hash functions (h3, h4) and split pointer p = 0

ADMT 2018/19 — Unit 20 J. Gamper 14/35

Linear Hashing Centralized Solution

Lookup in Centralized LH

The two hash functions are (hn, hn+1)

Lookup(k)
a = hn(k);
if (a < p) then a = hn+1(k);
return a

ADMT 2018/19 — Unit 20 J. Gamper 15/35

Linear Hashing Centralized Solution

Properties of Centralized LH

LH provides a linear growth of the file (one bucket at a time)

Bucket that overflows is not split, but an overflow bucket is added

This bucket will eventually be split when the split pointer points to it
Delayed management of collision overflows

A large part of the hash directory remains unchanged when the hash
function is modified

Not many data need to be reorganized
In a distributed environment this avoids to resend the complete directory to
the other nodes

Similar to extendable hashing, where the hash directory growths not so
gracefully (i.e., doubles when new hash values are needed)

ADMT 2018/19 — Unit 20 J. Gamper 16/35

Linear Hashing Distributed Solution

Distributed Linear Hashing (LH∗)/1

Let

n be the hash file level,
(hn, hn+1) be the hash functions, and
p be the split pointer

Assume servers S0,S1, . . . ,SN , where 2n ≤ N < 2n+1.

Each server holds one bucket

If server Si overflows

Add an overflow bucket to Si

Split (the bucket on the) server Sp.

Allocate a new server SN+1 to the hash structure
(might be the same physical server hosting several virtual servers)
Some objects are transferred from Sp to SN+1.

ADMT 2018/19 — Unit 20 J. Gamper 17/35

Linear Hashing Distributed Solution

Distributed Linear Hashing (LH∗)/2

LH∗ does not require resending entirely the hash directory each time the
hash function is modified or nodes are added/deleted

Only the following localization information needs to be communicated:

level n that determines the pair of hash functions (hn, hn+1) currently in use
current split pointer p
changes of the hash directory

If the number of peers grows rapidly, this might still be a lot of overhead.

More lightweight maintenance solutions are desirable!

ADMT 2018/19 — Unit 20 J. Gamper 18/35

Linear Hashing Distributed Solution

Lazy Adjustment to Reduce LH∗ Maintenance Cost

Each peer maintains a local image that records partial information about
the distributed hash structure, i.e.,

n, p, and a partial replication of the hash directory D

Local image might be outdated for several reasons:

Peer is temporarily disconnected
An asynchronuous replication protocol is used
Update is complex and expensive if clients are frequently
connected/disconnected

A “reasonably outdated” image represents a good trade-off, provided that
the client knows how to cope with lookup errors and outdated information.

ADMT 2018/19 — Unit 20 J. Gamper 19/35

Linear Hashing Distributed Solution

Lookup in LH∗ with the Forward Algorithm

Let k be the search key

Client

Compute the bucket address a of k using the Lookup algorithm of LH
Send the request to server Sa

Server

LH* server Sa checks whether it is
indeed the right recipient by
applying the forward algorithm

Attempts to find the correct
hash value a′ for k, using the
local image

If a′ is not the server address, the
client made an addressing error due
to an outdated local image

The request is then forwarded to
server a′

Algorithm: Forward(a)

// j denotes the server level
a′ := hj(k);
if (a′ = a) then

k is in Sa;
else

// a′ 6= a
a′′ := hj−1(k);
if (a′′ > a and a′′ < a′) then

a′ := a′′;

Forward request to server Sa′ ;

ADMT 2018/19 — Unit 20 J. Gamper 20/35

Linear Hashing Distributed Solution

LH∗ Lookup Example

Client issues a request search(5)

Level is n = 1
Lookup computes the bucket address a = h1(5) = 5 mod 21 = 1
The request is sent to server S1

Server S1 receives Client request

S1 is the last server that
split, and its level is 3.
Hence, a′ = h3(5) =
= 5 mod 23 = 5
Since a′ 6= a, the client
made an addressing error
Compute a′′ = h2(5) =
= 5 mod 22 = 1
Since a′′ 6> a, the request
is forwarded to S5, where
key 5 is found
Data and new value p is
returned to the client

ADMT 2018/19 — Unit 20 J. Gamper 21/35

Linear Hashing Distributed Solution

LH∗ Properties

The number of messages to reach the correct server is 3 in the worst case.

This makes the structure fully decentralized with one exception:

When a Server overflows, the exact value of p must be accurately
determined, i.e., the server that splits (in order to split that server)

This can be achieved by assigning a special role (Master) to one of the
servers:

Keeps the value of p and informs the other nodes when necessary.

Since this only happens during a split, the structure remains scalable.

ADMT 2018/19 — Unit 20 J. Gamper 22/35

Linear Hashing Distributed Solution

LH∗ Lessons Learned

A relative inaccuracy of the information maintained by a component is
acceptable, if associated to a stabilization protocol that guarantees that the
structure eventually converges to a stable and accurate state.

In order to limit the number of messages, the “metadata” information
related to the structure maintenance (local image) can be piggybacked
with messages that answer Client requests.

ADMT 2018/19 — Unit 20 J. Gamper 23/35

Consistent Hashing

Outline

1 Introduction & Motivation

2 Linear Hashing
Centralized Solution
Distributed Solution

3 Consistent Hashing

ADMT 2018/19 — Unit 20 J. Gamper 24/35

Consistent Hashing

Consistent Hashing (CH)

Each node (peer) is identified by an integer in the range [0, 2n − 1]

Each key is hashed into the same range [0, 2n − 1]

Arrange the peers in a logical ring (clockwise, incrementing IDs)

0 is the successor of 2n − 1

Each peer will be responsible for specific keys

A key is stored at the closest successor node
This is the first node whose ID ≥ hash(key)

Very simple – a peer needs to know only of its successor and predecessor!

Chord is one of the first DHT based on consistent hashing

Proposed as an index in P2P networks

ADMT 2018/19 — Unit 20 J. Gamper 25/35

Consistent Hashing

Key Assignment

Example: n = 16, and four nodes are added so far.

ADMT 2018/19 — Unit 20 J. Gamper 26/35

Consistent Hashing

Handling Requests

Any peer can get a request (insert or query).

If the hash key is not in the peer’s range of keys, the request is forwarded
to the successor
The process continues until the responsible node is found

Worst case: with p nodes, traverse p − 1 nodes – that’s O(N)
Average case: traverse p/2 nodes (still not exciting!)

ADMT 2018/19 — Unit 20 J. Gamper 27/35

Consistent Hashing

Adding/Joining a New Node

Some keys that were assigned to a node’s successor now get assigned to
the new node.

Data for those (key , value) pairs must be moved to the new node.

ADMT 2018/19 — Unit 20 J. Gamper 28/35

Consistent Hashing

Removing a Node

Keys are reassigned to the node’s successor.

Data for those (key , value) pairs must be moved to the successor.

ADMT 2018/19 — Unit 20 J. Gamper 29/35

Consistent Hashing

Performance

We are not excited about an O(N) lookup!

A simple approach to get great performance would be:

All nodes know about each other (index/node table).
When a peer gets a query, it searches its index for the node that owns those
values.
Gives us O(1) performance
Add/remove node operations must inform everyone.

Not a good solution if we have millions of peers (huge tables)!

Finger tables are a better solution

ADMT 2018/19 — Unit 20 J. Gamper 30/35

Consistent Hashing

Finger Tables

Each node stores a so-called finger table – compromise to avoid huge
per-node tables

Finger table is a partial list of successor nodes

The i-th entry in the finger table of a
node n identifies the first node that
succeeds or is equal n + 2i .

finger table[0]: 1st (immediate)
successor
finger table[1]: 2nd successor
finger table[2]: 4th successor
finger table[3]: 8th successor

In other words, the i-th finger points
1/2n−i way around the ring

ADMT 2018/19 — Unit 20 J. Gamper 31/35

Consistent Hashing

Join Example in Chord with Finger Table

Node n1 joins the network Node n2 joins the network

Nodes n0 and n6 join the network Item f7 and f1 are added

ADMT 2018/19 — Unit 20 J. Gamper 32/35

Consistent Hashing

Lookup with Finger Table

Algorithm: Lookup(k)

Let n′ be the ID of the local node;
Look in finger table for the highest node n s.t. n′ < n < k;
if n exists then

Call Lookup(k) on node n;
else

return successor node;

ADMT 2018/19 — Unit 20 J. Gamper 33/35

Consistent Hashing

Lookup Performance in Chord with Finger Table

Finger table size: log N entries

Lookup: O(log N) nodes need to be contacted to find the node that stores
a key

With each hop you go 1/2 the way towards the destination.
Not as cool as O(1) but way better than O(N)!

ADMT 2018/19 — Unit 20 J. Gamper 34/35

Summary

Content location and fast access to single content items are two important
issues in P2P networks.

Hash tables are well known for a constant search complexity in centralized
databases.

Aim is to used hash-based solution to distribute content in P2P systems –
aka peer-to-peer version of a (key , value) database.

Linear hashing and consistent hashing are two efficient solutions for P2P
systems, which are characterized by dynamicity

peers are entering and exiting the network;
data is growing quickly.

Chord is one of the first solutions based on consistent hashing for content
distribution and indexing in P2P systems.

ADMT 2018/19 — Unit 20 J. Gamper 35/35

	Introduction & Motivation
	Linear Hashing
	Centralized Solution
	Distributed Solution

	Consistent Hashing

