
Advanced Data Management Technologies
Unit 19 — Distributed Systems

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

ADMT 2018/19 — Unit 19 J. Gamper 1/44



Outline

1 Introduction to Distributed Systems

2 Networking Infrastructure and P2P Systems

3 Data Replication and Consistency

4 Failure Mangement

5 Case Study: DFS for Very Large Files

ADMT 2018/19 — Unit 19 J. Gamper 2/44



Introduction to Distributed Systems

Outline

1 Introduction to Distributed Systems

2 Networking Infrastructure and P2P Systems

3 Data Replication and Consistency

4 Failure Mangement

5 Case Study: DFS for Very Large Files

ADMT 2018/19 — Unit 19 J. Gamper 3/44



Introduction to Distributed Systems

Data Independence/1

In the old days, programs stored data in regular files

Each program has to maintain its own data

huge overhead
error-prone

ADMT 2018/19 — Unit 19 J. Gamper 4/44



Introduction to Distributed Systems

Data Independence/2

The development of DBMS helped to fully achieve data independence
(transparency).

Provide centralized and controlled data maintenance and access.

Application is immune to physical and logical file organization.

ADMT 2018/19 — Unit 19 J. Gamper 5/44



Introduction to Distributed Systems

Data Independence/3

Distributed (database) systems are the union of what appear to be two
diametrically opposed approaches to data processing: database systems and
computer networks

Computer networks promote a mode of work that goes against centralization

Key issues to understand this combination

The most important objective of DBs is integration not centralization.
Integration is possible without centralization

Goal of distributed (database) systems

Achieve data integration and data distribution transparency

ADMT 2018/19 — Unit 19 J. Gamper 6/44



Introduction to Distributed Systems

Distributed System

A distributed (computing) system is a collection of autonomous processing
elements (also termed nodes or sites) that are interconnected by a
computer network.

We assume a shared nothing architecture

The nodes communicate via message passing (i.e., pieces of data conveying
information)
They do not share storage or computing ressources

ADMT 2018/19 — Unit 19 J. Gamper 7/44



Introduction to Distributed Systems

Distributed Database System Example

Database consists of 3 relations employees, projects, and assignment

which are partitioned and stored at different sites (fragmentation).

ADMT 2018/19 — Unit 19 J. Gamper 8/44



Introduction to Distributed Systems

Promises of Distributed Systems

Distributed Database Systems deliver the following advantages:

Higher reliability
Improved performance and scalability
Easier system expansion
Transparency of distributed and replicated data

ADMT 2018/19 — Unit 19 J. Gamper 9/44



Introduction to Distributed Systems

Promises – Higher Realiability

Replication of components

No single points of failure

e.g., a broken communication link or processing element does not bring
down the entire system

Distributed transaction processing guarantees the consistency of the
database and concurrency.

ADMT 2018/19 — Unit 19 J. Gamper 10/44



Introduction to Distributed Systems

Promises – Improved Performance and Scalability

Proximity of data to its points of use

Reduces remote access delays
Requires some support for fragmentation and replication

Parallelism in execution

Inter-query parallelism
Intra-query parallelism

Update and read-only queries influence the design of DDBSs substantially

If mostly read-only access is required, as much as possible of the data should
be replicated
Writing becomes more complicated with replicated data

ADMT 2018/19 — Unit 19 J. Gamper 11/44



Introduction to Distributed Systems

Promises – Easier System Expansion

Issue is scalability for huge amounts of data

Emergence of commodity computers and workstation technologies

Network of workstations much cheaper than a single mainframe computer

ADMT 2018/19 — Unit 19 J. Gamper 12/44



Introduction to Distributed Systems

Promises – Transparency

Refers to the separation of the higher-level semantics of the system from
the lower-level implementation issues

A transparent system hides the implementation details from the users and
provides a high-level interface for the development of complex applications.

Various forms of transparency can be distingushed:
Network transparency

Location transparency
Naming transparency

Replication transparency
Fragmentation transparency
Transaction transparency

Concurrency transparency
Failure transparency

Performance transparency

ADMT 2018/19 — Unit 19 J. Gamper 13/44



Networking Infrastructure and P2P Systems

Outline

1 Introduction to Distributed Systems

2 Networking Infrastructure and P2P Systems

3 Data Replication and Consistency

4 Failure Mangement

5 Case Study: DFS for Very Large Files

ADMT 2018/19 — Unit 19 J. Gamper 14/44



Networking Infrastructure and P2P Systems

Physical Networks

Local area networks (LAN) are used in data centers to connect hundreds or
tousands of servers

The Internet (a WAN) links millions of LANs
3 communication levels can be distinguished:

1 Servers are grouped on “racks”, linked by a high-speed cable. A typical rack
contains a few dozens of servers.

2 A data center consists of (possibly a large number of) racks connected by
routers (or switches) that transfer non-local messages.

3 A (slower) communication level between distinct clusters, e.g., to allow
independent data centers to cooperate.

In 2010, a typical Google data
center consists of 100–200
racks, each hosting ≈ 40
servers.

Today, the number of servers is
above one million.

ADMT 2018/19 — Unit 19 J. Gamper 15/44



Networking Infrastructure and P2P Systems

Client/Server Architecture

A client/server architecture is a particular kind of overlay network on top of
a physical network (e.g., the Internet)

A reliable server is a data source

Clients request data from server

Well known and very successful model in some domains
WWW (HTTP), FTP, Web services, etc.

ADMT 2018/19 — Unit 19 J. Gamper 16/44



Networking Infrastructure and P2P Systems

Limitations of Client/Server Architecture

Scalability is hard to achieve

Server presents a single point of failure

Requires administration

Unused resources at the network edge

P2P systems try to address these limitations

ADMT 2018/19 — Unit 19 J. Gamper 17/44



Networking Infrastructure and P2P Systems

Peer-to-Peer Networks/1

A P2P network/system is a particular kind of overlay network, a graph
structure build over a native physical network.

Nodes are called peers and communicate with messages sent over the
Internet.

Typically, a message sent by peer A first reaches a local router, that
forwards the message to other routers (local, regional, or world-wide) until
it is delivered to peer B.

By abstracting this complexity, a P2P network imagines a direct link
between A and B, as if they were directly connected.

This pseudo-direct connection that may (physically) consist of 10 or more
forwarding messages, or hops, is called an overlay link.

ADMT 2018/19 — Unit 19 J. Gamper 18/44



Networking Infrastructure and P2P Systems

Peer-to-Peer Networks/2

All nodes/peers are both clients and servers

Nodes provide and consume data, content, storage, memory, CPU

Nodes are autonomous, i.e., no administrative/centralized authority
“The ultimate form of democracy on the Internet”

Any node can initiate a connection

Nodes collaborate directly with each other (not through servers)

Network is dynamic: nodes enter and leave the network “frequently”

Nodes have widely varying capabilities

ADMT 2018/19 — Unit 19 J. Gamper 19/44



Networking Infrastructure and P2P Systems

Benefits of P2P Systems

Scalability

Consumers of resources also donate resources
Aggregated resources grow naturally with utilization

Reliability

Replicas
Geographic distribution
No single point of failure

Ease of administration

Nodes are self organized
Built-in fault tolerance, replication, and load balancing

Efficient use of resources

ADMT 2018/19 — Unit 19 J. Gamper 20/44



Networking Infrastructure and P2P Systems

Unstructured P2P Networks

Unstructured P2P networks do not impose a particular structure on the
overlay network, but are formed by nodes that randomly form connections
to each other, e.g., Gnutella, Gossip, and Kazaa.

Due to the lack of structure, flooding is the only search technique:

Peer disseminates request to all its friends, which flood in turn their own
friends, and so on until the target of the request is reached.
Flooding is limited by a “Time to live” (TTL) bound: number of times a
query is forwarded before being discarded to avoid using too much resources.

Simple and easy to build as a peer only needs to know some friends to join
a network.

No guarantee that flooding finds the desired data

in particular for rare data shared by only a few peers it is very unlikely

Not very efficient and inherently unstable

Peers are autonomous and selfish, yielding frequently a very high rate of
peers going in and out of the system.
It is difficult to guarantee that a node stays connected to the system, or that
the overall topology remains consistent.

ADMT 2018/19 — Unit 19 J. Gamper 21/44



Networking Infrastructure and P2P Systems

Structured P2P Networks

In structured P2P networks the overlay is organized into a specific topology
following a specific protocol.

This provides more structured ways of looking up the network and to avoid
the blind and uncontrolled flooding mechanism.

The protocol ensures that any node can efficiently search the network for
data, even if the data is extremely rare.

Joining the network becomes more involved as nodes have to satisfy certain
criteria.

BUT, improved performance and stability.

Distributed Hash Tables (DHTs) are the most popular search mechanism in
structured P2P networks (see next unit).

ADMT 2018/19 — Unit 19 J. Gamper 22/44



Networking Infrastructure and P2P Systems

Latency and Bandwidth

Different network latency and bandwidth are encountered in P2P systems.

Both parameters have a huge impact on the performance in P2P systems.

Type Latency Bandwidth

Disk ≈ 5 ms at best 100 MB/s
LAN 1–2 ms 1 GB/s (single rack),

≈ 100 MB/s (switched);
Internet Highly variable: 10–100 ms Highly variable: typical a few MBs

Test these values on your own infrastructure by using

ping or
Web sites, e.g., http://www.pcpitstop.com/internet/Bandwidth.asp

ADMT 2018/19 — Unit 19 J. Gamper 23/44



Networking Infrastructure and P2P Systems

Distributed Storage Systems Example

Read 1 TB of data

Sequential access: 2,5 hours

Parallel access: 1 TB spread over
100 disks, all on the same
machine

Read 10 GB from each disk
1,5 min if all disks work in
parallel
CPU overloaded if size of data
increases

Distributed access: 100
computers, each with local disk

Same disk-memory transfer
time
But, CPU is not overloaded.

ADMT 2018/19 — Unit 19 J. Gamper 24/44



Networking Infrastructure and P2P Systems

Performance of Distributed Storage Systems

Disk transfer rate is a bottleneck for batch processing of large scale data
sets.

Parallelization and distribution of the data on many machines is a means to
eliminate this bottleneck.

Disk seek time is a bottleneck for transactional applications (point queries)
that submit a high rate of random accesses.

Replication, distribution of writes and distribution of reads are the technical
means to make such applications scalable.

Data locality: whenever possible, program should be “pushed” near the
data they need to access to avoid costly data exchange over the network.

ADMT 2018/19 — Unit 19 J. Gamper 25/44



Data Replication and Consistency

Outline

1 Introduction to Distributed Systems

2 Networking Infrastructure and P2P Systems

3 Data Replication and Consistency

4 Failure Mangement

5 Case Study: DFS for Very Large Files

ADMT 2018/19 — Unit 19 J. Gamper 26/44



Data Replication and Consistency

Data Replication and Consistency

Data replication is at the core of distributed systems, as most of the
properties of distributed systems depend on it.

Without replication, the loss of a server hosting a unique copy of some data
item results in unrecoverable damages.
Ability to distribute read/write operations for improved scalability.

Problems raised by data replication

Performance: writing several copies of an item takes more time, which may
affect the throughput of the system.
Consistency: consistency management becomes difficult in a distributed
setting.

ADMT 2018/19 — Unit 19 J. Gamper 27/44



Data Replication and Consistency

Replication Policies

Replication policies consider the interactions between performance and
consistency issues

Different technical choices:

eager (synchronous) or lazy (asynchronous) replication
primary or distributed versioning

This gives four different replicaton policies

ADMT 2018/19 — Unit 19 J. Gamper 28/44



Data Replication and Consistency

Eager/Synchronous Replication with Primary Copy

A put(d) request sent by Client A to Server
N1 is replicated at once on Server N2.

The request is completed only when both N1
and N2 have sent an acknowledgment

meanwhile, A is frozen, as well as any
other client that would access d

Each data item has a primary copy and
several (at least one) secondary copies

Each update is first sent to the primary copy

Properties

+ A read request sent by client B always accesses a consistent state of d ,
whether it reads from server N1 or N2

+ Requests sent by several clients relating to the same item d can be queued,
which ensures that updates are applied sequentially and not in parallel

− The obvious downside is that these applications have to wait for the
completion of other clients’ requests, both for writing and reading

ADMT 2018/19 — Unit 19 J. Gamper 29/44



Data Replication and Consistency

Lazy/Asynchronous Replication with Primary Copy

There is still a primary copy, but the
replication is asynchronous

Some of the replicas may be out of date
with respect to client’s requests

e.g., client B may read from server N2 an
old version of item d because the
synchronization is not yet completed

Often termed “Master-slave” replication

Properties

+ Client has never to wait
− Client might read an old version of data. However, due to the primary copy,

the replicas will eventually be consistent because there cannot be
independent updates of distinct replicas.

Considered acceptable in many modern “NoSQL” data management systems
that accept to trade strong consistency for a higher read throughput

ADMT 2018/19 — Unit 19 J. Gamper 30/44



Data Replication and Consistency

Eager/Sychronous Replication without Primary Copy

No primary copy anymore, but eager replication

Two clients can simultaneously write on distinct replicas

BUT, the eager replication implies that these replications must be
synchronized right away

Properties

+ Inconsistencies are avoided
− It is likely to get some kind of interlocking, where both clients wait for some

resource locked by another one

ADMT 2018/19 — Unit 19 J. Gamper 31/44



Data Replication and Consistency

Lazy/Asynchronous Replication without Primary
Copy

Both primary copies and synchronous replication are given up

Most flexible form of replication

Often referred to as “Master-Master” replication

Properties
+ Client operations are never stalled by concurrent operations (optimistic

approach, lock-free)
Often decisive for Web-scale data intensive applications

− Possibly inconsistent states
Management of inconsistent replicas required (data reconciliation)
Practical approach often used: promote one version as “current” and inform
others about a conflict, e.g., CVS, SVN

ADMT 2018/19 — Unit 19 J. Gamper 32/44



Data Replication and Consistency

Different Consistency Levels

Data replication leads to several consistency levels
Strong consistency (ACID properties)

Requires a (slow) synchronous replication, and possibly heavy locking
mechanisms
Traditional choice of database systems

Eventual consistency

Trades eager replication for performance
The system is guaranteed to converge toward a consistent state (possibly
relying on a primary copy)

Weak consistency

Chooses to fully favor efficiency, and never wait for write and read operations
Some requests may serve outdated data
Inconsistencies typically arise and the system relies on reconciliation based on
the application logic

ADMT 2018/19 — Unit 19 J. Gamper 33/44



Failure Mangement

Outline

1 Introduction to Distributed Systems

2 Networking Infrastructure and P2P Systems

3 Data Replication and Consistency

4 Failure Mangement

5 Case Study: DFS for Very Large Files

ADMT 2018/19 — Unit 19 J. Gamper 34/44



Failure Mangement

Failure Management

Centralized system

If a program fails, the simple (and standard) solution is to abort and then
restart its transactions
Chances that a single machine fails are low

Distributed system with thousands of commodity computers

Failures are quite frequent due to program bugs, human errors, hardware or
network problems, etc.
Small tasks: simplest solution to restart them.
Long lasting distributed tasks: restarting a whole transaction is often not an
acceptable option, since

errors typically occur too often and
in most cases a failure affects only a minor part of the task

ADMT 2018/19 — Unit 19 J. Gamper 35/44



Failure Mangement

Failure Reovery in Centralized DBMSs

Standard recovery in centralized DBMSs are
based on a persistent log file

Client issues a write(a) (1)
The server does not write immediately a in its
repository, because a random access is too
inefficient
Instead, the server writes a in an append-only
log file (2), which is efficient
When the log manager confirms that the data
is indeed on persistent storage (3), the server
can send back an acknowledgment to the
client (4)
Eventually, the main memory data will be
flushed in the repository (5)

Recovery is possible from the log file (REDO
protocol)

ADMT 2018/19 — Unit 19 J. Gamper 36/44



Failure Mangement

Failure Recovery in Distributed Systems

Server must log a write operation to the local
log file (3) and to one or more remote logs (2)

Depends on the use of either a synchronous or
asynchronous protocol (similar to replication
policies).

Synchronous protocol
Client waits for slowest writer, i.e., server acknowledges the client (4) only
when all remote nodes have sent a confirmation of successful write operation
This may severely hinder the efficiency of updates
But, all replicas are consistent

Asynchronous protocol
Client waits only for fastest writer, i.e., until the fastest copy has been written
Puts a risk on data consistency, as a subsequent read operation may access
an older version that does not yet reflect the update

Recovery
If the server dies, the closest mirror can be chosen
It reads from its own log a state equivalent to that of the dead server, and
can begin to answer client requests

ADMT 2018/19 — Unit 19 J. Gamper 37/44



Case Study: DFS for Very Large Files

Outline

1 Introduction to Distributed Systems

2 Networking Infrastructure and P2P Systems

3 Data Replication and Consistency

4 Failure Mangement

5 Case Study: DFS for Very Large Files

ADMT 2018/19 — Unit 19 J. Gamper 38/44



Case Study: DFS for Very Large Files

Why a New File System for Very Large Data?

NFS (in the UNIX world) provides a standard
solution to share files among computers

Assume that server 1 needs to access the files
located in the directory dirC on server 2

NFS allows dirC to be “mounted” in local FS

User can navigate to the files stored in
/dirB/dirC just as if it was fully located on
the local computer (transparent name space)

NFS is not designed for very large scale, data-intensive applications and
breaks some principles.

Does not provide data locality

A process on server 1 in charge of manipulating data on server 2 will strongly
stress the network bandwidth

The approach is hardly scalable, there is no load balancing

if file1 stores 90% of the data, server 2 will serve 90% of the client requests

ADMT 2018/19 — Unit 19 J. Gamper 39/44



Case Study: DFS for Very Large Files

A New DFS for Very Large Data

In a distributed file system (DFS), a file is no
longer the storage unit, but is decomposed
in “chunks” of equal size, each allocated by
the DFS to the participating nodes

There exists a global file system namespace
shared by all nodes in the cluster

Defines a hierarchy of directories and files
“Virtual” as it does not affect in any way
the physical location of its components.

Files are mapped in a distributed manner to the cluster nodes

e.g., file1 is split in three chunks, each chunk is duplicated, and the two
copies are each assigned to a distinct node

Properties

A fair balancing is natively achieved since a file is split in equal-size chunks
and evenly distributed
Reliability is obtained by replication of chunks
Availability can be implemented by a standard monitoring process

ADMT 2018/19 — Unit 19 J. Gamper 40/44



Case Study: DFS for Very Large Files

The Google File System (GFS)

Consists of a Master node and many
server nodes

Master is the coordinator

Receives client connections/requests
Maintains the description of the
global file system namespace and the
allocation of file chunks
Monitors system state with
“heartbeat” messages in order to
detect failures as early as possible

Servers receive file chunks and must take appropriate local measures to
ensure the availability and reliability of their (local) storage

ADMT 2018/19 — Unit 19 J. Gamper 41/44



Case Study: DFS for Very Large Files

Increasing Scalability of the Google File System

A single-master architecture brings
simplicity, but raises concerns about
scalability and reliability

Client image solves scalability issue: a
cache to store meta-information about
the location of file chunks

Example: Client sends a read(/dirB/file1) request

First request is routed to the Master (1)
Master inspects the namespace and finds that file1 is mapped to a list of
chunks; their location is found in a local table (2)
Each server holding a chunk of file1 transmits this chunk to the client (3)
Client keeps in cache the addresses of the nodes that serve file1

This knowledge can be used for subsequent accesses to file1 (4)

Client image avoids a systematic access to the Master for each request

By limiting the exchanges with the Master to metadata information, the
coordination task is reduced and can be handled by a single computer.

ADMT 2018/19 — Unit 19 J. Gamper 42/44



Case Study: DFS for Very Large Files

Error Handling in the Google File System

Failures are handled by standard replication and monitoring techniques

Chunks are replicated on at least 3 servers

Master is aware about the replicas

If a server does not answer to a heartbeat message, Master initiates a
server replacement

Ask one of the other servers (with the same replicas) to copy the relevant
chunks to a new server.

Master itself needs special protection because it holds the file namespace

A specific recovery mechanism is used for all the updates that affect the
namespace structure

ADMT 2018/19 — Unit 19 J. Gamper 43/44



Summary

Distributed system is a collection of autonomouos processing elements
(nodes/sites) that are conneced by a network.
Distributed Systems promise improved realiability, performance, and
scalability.
P2P networks provide a powerful distributed infrastructure

Overlay network on top of a physical network.
No distinction between client and server (nodes are both)
Dynamic and flexible, i.e., nodes can enter and leave the network
Structured versus unstructured P2P systems

Different latency and network bandwith need to be considered P2P systems.
Data replication is at the core of distributed systems, but raises problems of
performance and consistency.

Different replication policies lead to different consistency models.
In Web scale applications, eventual or weak consistency is often preferred
over strong consistency.

Failure management is based on log-file (similar to centralized systems)
Distributed file system for very large data

File is decomposed into chunks, which are replicated on different nodes.
Natively supports a fair balancing, reliability and availability.

ADMT 2018/19 — Unit 19 J. Gamper 44/44


	Introduction to Distributed Systems
	Networking Infrastructure and P2P Systems
	Data Replication and Consistency
	Failure Mangement
	Case Study: DFS for Very Large Files

