Advanced Data Management Technologies
Unit 18 — MapReduce Design Patterns

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE
Outline

1. Overview of MR Design Patterns

2. Summarization Patterns

3. Filtering Patterns
 - Filtering
 - Bloom Filtering
 - Top Ten
 - Distinct

4. Join Patterns
 - Reduce Side Join
 - Replicated Join
 - Composite Join
 - Cartesian Product
Outline

1 Overview of MR Design Patterns

2 Summarization Patterns

3 Filtering Patterns
 - Filtering
 - Bloom Filtering
 - Top Ten
 - Distinct

4 Join Patterns
 - Reduce Side Join
 - Replicated Join
 - Composite Join
 - Cartesian Product
Key decision: What should be done by map and what by reduce?

map
- Can do something to each individual key-value pair, but it cannot look at other key-value pairs
 - Example: Filtering out key-value pairs we don’t need
- Can emit more than one intermediate key-value pair for each incoming key-value pair
 - Example: Incoming data is text, map produces (word, 1) for each word
- Can emit data with specific keys to all reducers, e.g., EmitToAllReducers()

reduce
- Can aggregate data
- Can look at multiple values, as long as map has mapped them to the same (intermediate) key
 - Example: Count the number of words, add up the total cost, ...

Important to get the intermediate form right!

Design pattern help to develop algorithms.
MapReduce Design Patterns

- Book by Donald Miner & Adam Shook
- Building effective algorithms and analytics for Hadoop and other systems.
- 23 pattern grouped into six categories
 - Summarization
 - Filtering
 - Data Organization
 - Joins
 - Metapatterns
 - Input and output
Pattern Categories/1

- **Filtering patterns**: Extract interesting subsets of the data
 - Filtering
 - Bloom filtering
 - Top ten
 - Distinct

- **Summarization patterns**: Top-down summaries to get a top-level view
 - Numerical summarizations
 - Inverted index
 - Counting with counters

- **Data organization patterns**: Reorganize and restructure data to work with other systems or to make MapReduce analysis easier
 - Structured to hierarchical
 - Partitioning
 - Binning
 - Total order sorting
 - Shuffling
Pattern Categories/2

- **Join patterns**: Bringing and analyze different data sets together to discover interesting relationships.
 - Reduce-side join
 - Replicated join
 - Composite join
 - Cartesian product

- **Metapatterns**: Piece together several patterns to solve a complex problem or to perform several analytics in the same job.
 - Job chaining
 - Chain folding
 - Job merging

- **Input and output patterns**: Custom the way to use Hadoop to input and output data.
 - Generating data
 - External source output
 - External source input
 - Partition pruning
Outline

1 Overview of MR Design Patterns

2 Summarization Patterns

3 Filtering Patterns
 - Filtering
 - Bloom Filtering
 - Top Ten
 - Distinct

4 Join Patterns
 - Reduce Side Join
 - Replicated Join
 - Composite Join
 - Cartesian Product
Numerical Summarizations

- A general pattern for calculating aggregate statistical values over your data, e.g., minimum, maximum, average, median, and standard deviation.
- Group records together by a key field and calculate a numerical aggregate per group to get a top-level view of a large data set.

Applications
- Word count, record count
- Min, max, count of a particular event
- Average, median, standard deviation

SQL resemblance

```sql
SELECT MIN(numericalcol1), MAX(numericalcol1), COUNT(*)
FROM table
GROUP BY groupcol2;
```
Numerical Summarizations Structure

- **Mapper**: outputs keys that consist of each field to group by, and values consisting of any pertinent numerical items.
- **Reducer**: receives a set of numerical values \((v_1, v_2, v_3, \ldots, v_n)\) associated with a group-by key and performs the (aggregate) function \(\theta(v_1, \ldots, v_n)\).
Numerical Summarizations Example

- Given a list of user comments in a mailing list, determine the first and last time a user commented and the total number of comments from that user.

- User comment
 - `<row Id="8189677" PostId="6881722" Text="Have you looked at Hadoop?" CreationDate="2011-07-30T07:29:33.343" UserId="831878" />

- After a grouping operation, the reducer has to iterate over all values associated with a group and to compute the aggregate functions.
public static class MinMaxCountMapper extends Mapper ... {

 // Our output key and value Writables
 private Text outUserId = new Text();
 private MinMaxCountTuple outTuple = new MinMaxCountTuple();

 public void map(Object key, Text value, Context context) throws IOException {
 Map<String, String> parsed = transformXmlToMap(value.toString());

 // Grab the "CreationDate" and UserID field, and parse the string into a Date object
 String strDate = parsed.get("CreationDate");
 String userId = parsed.get("UserId");
 Date creationDate = frmt.parse(strDate);

 // Set the minimum and maximum date values and the count
 outTuple.setMin(creationDate);
 outTuple.setMax(creationDate);
 outTuple.setCount(1);

 // Set our user ID as the output key
 outUserId.set(userId);

 // Write out the userID and the values
 context.write(outUserId, outTuple);
 }
}
public static class MinMaxCountReducer extends Reducer ...

 // Our output value
 private MinMaxCountTuple result = new MinMaxCountTuple();

 public void reduce(Text key, Iterable<MinMaxCountTuple> values, Context context) ...
 {
 // Initialize result
 result.setMin(null);
 result.setMax(null);
 result.setCount(0);
 int sum = 0;

 // Iterate through all input values for this key
 for (MinMaxCountTuple val : values) {
 if (result.getMin() == null || val.getMin().compareTo(result.getMin()) < 0) {
 result.setMin(val.getMin());
 }
 if (result.getMax() == null || val.getMax().compareTo(result.getMax()) > 0) {
 result.setMax(val.getMax());
 }
 sum += val.getCount();
 }
 result.setCount(sum);
 context.write(key, result);
 }
Outline

1 Overview of MR Design Patterns

2 Summarization Patterns

3 Filtering Patterns
 - Filtering
 - Bloom Filtering
 - Top Ten
 - Distinct

4 Join Patterns
 - Reduce Side Join
 - Replicated Join
 - Composite Join
 - Cartesian Product
Filtering Patterns

- To understand a smaller piece/subset of data
 - e.g., a top-ten listing, the results of a de-duplication
- **Sampling** as a special form of filtering
 - Get a small representative sample of a data set.
- Filtering does **not change** the actual records
- Filtering Patterns:
 - Filtering
 - Bloom Filtering
 - Top Ten
 - Distinct
Filtering is the most basic pattern and evaluates each record separately based on some condition.

Intent
- Filter out records that are not of interest.
- You want to focus your analysis on a subset of a large data set.

Applications
- Closer view of data
- Tracking a thread of events
- Data cleansing
- Removing low scoring data (if you can score your data)

SQL resemblance
- SELECT * FROM table WHERE value < x
Filtering Structure

- No reducer needed, i.e., no further processing/aggregation of the data
- `map(key, record) {
 if we want to keep record then
 emit key, value
}

![Diagram of filtering structure]
Random Sampling Example

- Task: Grab a random subset of a dataset
- Random number generator produces a number: if the value is below a threshold, keep the record, otherwise skip it
- Hadoop provides a `setup` method that is called once for each mapper prior to the many calls to `map`.

```java
public static class SRSMapper extends Mapper<Object, Text, NullWritable, Text> {
    private Random rands = new Random();
    private Double percentage;

    protected void setup(Context context) throws ...
    {
        // Retrieve the percentage that is passed in via the configuration
        // like this: conf.set("filter_percentage", .5) for .5%
        String strPercentage = context.getConfiguration().get("filter_percentage");
        percentage = Double.parseDouble(strPercentage) / 100.0;
    }

    public void map(Object key, Text value, Context context) throws ...
    {
        if (rands.nextDouble() < percentage)
        {
            context.write(NullWritable.get(), value);
        }
    }
}
```
Bloom Filtering

- **Intent**
 - Keep records that are member of a predefined set of **hot values**
 - Some **false positives** are acceptable, i.e., some records will get through the filter although they are not in the hot values

- **Applications**
 - Removing most of the non-watched values
 - Prefiltering a data set for an expensive set membership check
A Bloom filter (B.H. Bloom, 1970) is a space-efficient probabilistic data structure that is used to test set membership.

Filter returns either possibly in set or definitely not in set

- i.e., false positive matches are possible, but not false negatives

The filter is represented by a bit vector of size m and k different hash functions that map each element (hot value) of the set to one of the m bits.

Training phase: for all elements in the set, the k hash functions are computed and the corresponding bits are set to 1.

Check membership: compute the k hash functions for the element

- if all hash functions map to 1 \rightarrow possibly in the set
- if at least one hash function maps to 0 \rightarrow not in the set

\[\{x, y, z\} \]

- $M = 18$, $k = 3$
- w is not in the set $\{x, y, z\}$
The Bloom filter is first trained and stored in the HDFS.

The mapper then calls the setup method to load the Bloom filter before processing the input data.

The **DistributedCache** is a Hadoop utility that ensures that a file in the HDFS is present on the local file system of each task that requires it.
Bloom Filtering Example

- **Task:** Given a list of user comments, filter out a majority of the comments that do not contain any of a set of predefined keywords

```java
public static class BloomFilteringMapper extends Mapper<Object, Text, Text, NullWritable> {
    private BloomFilter filter = new BloomFilter();

    protected void setup(Context context) throws ...
    {
        // Get Bloom filter from the DistributedCache
        URI[] files = DistributedCache.getCacheFiles(context.getConfiguration());
        DataInputStream strm = new DataInputStream(new FileInputStream( files[0].getPath()));
        filter.readFields(strm);
        strm.close();
    }

    public void map(Object key, Text value, Context context) throws ...
    {
        Map<String, String> parsed = transformXmlToMap(value.toString());
        // Get the value for the comment
        String comment = parsed.get("Text");
        StringTokenizer tokenizer = new StringTokenizer(comment);

        // For each word: if the word is in the filter, output the record and break
        while (tokenizer.hasMoreTokens()) {
            String word = tokenizer.nextToken();
            if (filter.membershipTest(new Key(word.getBytes()))) {
                context.write(value, NullWritable.get());
                break;
            }
        }
    }
}
```
Top Ten

Intent

- Retrieve a small number of top K records, according to some ranking/criterion

- The number of output records should be significantly lower than the number of input records.

- It must be possible to determine an ranking.

Applications

- Outlier analysis
- Select interesting data (most valuable data)

SQL Resemblance

- SQL: `SELECT * FROM table WHERE col4 DESC LIMIT 10`
Top Ten Structure

- **Mapper**: find local top K
- (only one) **Reducer**: $K \cdot M$ records \rightarrow the final top K
Top Ten Example

- Hadoop provides a cleanup method that is called once after all key/value pairs have been through map (just like setup which is called before)

```java
class mapper:
    setup():
        initialize top ten sorted list
    map(key, record):
        insert record into top ten sorted list
        if length of array > 10 then
            truncate list to a length of 10
    cleanup():
        for record in top sorted ten list:
            emit null, record

class reducer:
    setup():
        initialize top ten sorted list
    reduce(key, records):
        sort records
        truncate records to top 10
        for record in records:
            emit record
```
Distinct

- Intent
 - Find a unique set of values from similar records with potential duplicates

- Applications
 - Deduplicate data
 - Getting distinct values
 - Protecting from an inner join explosion

- SQL Resemblance
 - SQL: SELECT DISTINCT * FROM table;
Distinct Structure

- Exploits MapReduce’s ability to group keys together to remove duplicates
- The mapper outputs the input value as intermediate key
- Reducer groups all duplicates together and simply outputs the key
- Duplicate records are often located close to each other in a data set, so a combiner will deduplicate most of them in the map phase

```python
map(key, record):
    emit (record, null)

reduce(key, records):
    emit (key)
```
Outline

1. Overview of MR Design Patterns
2. Summarization Patterns
3. Filtering Patterns
 - Filtering
 - Bloom Filtering
 - Top Ten
 - Distinct
4. Join Patterns
 - Reduce Side Join
 - Replicated Join
 - Composite Join
 - Cartesian Product
Join Patterns

An SQL query walks into a bar, sees two tables and asks them “May I join you?”

- Joins are very important in RDBMS, but among the most complex operations in MapReduce
 - MR is good in processing datasets by looking at each record in isolation
 - Joining/combining datasets does not fit gracefully into the MR paradigm

- Refresh of RDMS equality joins
 - Inner Join
 - Outer Join
 - Cartesian Product
 - Anti Join = full outer join − inner join

- Join patterns in MR
 - Reduce Side Join
 - Replicated Join
 - Composite Join
 - Cartesian Product
Reduce Side Join

- **Reduce Side Join**: Reducer executes the actual join
 - Join large multiple data sets by a **foreign key**
 - **Simple** to implement inReducers
 - Supports **all** different join operations
 - **No limitation** on the size of the data sets

- **SQL resemblance**

  ```sql
  SELECT users.ID, users.Location, comments.upVotes
  FROM users [INNER|LEFT|RIGHT] JOIN comments
  ON users.ID = comments.UserID
  ```
Reduce Side Join Structure

- Mapper prepares *(key, record)*
 - key is the join attribute, the (data) record is flagged with ID of data set
- Reducer performs join operation on identical keys
 - Creates for each key a list for each data set and joins them

Diagram:
- Data Set A
 - Input Split
 - Join Mapper *(key, record)*
 - Join Reducer
 - Output Part
- Data Set B
 - Input Split
 - Join Mapper *(key, record)*
 - Join Reducer
 - Output Part
Task: Enrich comments with user information
- Table A contains user information, table B contains user comments
- Connected by user ID

Mapper
- The `UserJoinMapper` adds “A” in front of each value/record
 - Thus, the reducer knows from which relation the value comes
- Similar, the `CommentJoinMapper` prepends “B”

```java
public static class UserJoinMapper extends Mapper<Object, Text, Text, Text> {
    private Text outkey = new Text();
    private Text outvalue = new Text();

    public void map(Object key, Text value, Context context) throws ...{
        // Parse the input string and extract the user ID
        String userId = value.toString().get("Id");

        // The foreign join key is the user ID
        outkey.set(userId);

        // Flag this record for the reducer and then output
        outvalue.set("A" + value.toString());
        context.write(outkey, outvalue);
    }
}
```
Reduce Side Join Example/2

- Reducer iterates through all values of each group and separates the values
- Join logic is applied then on these lists (and differs depending on the join)

```java
public static class UserJoinReducer extends Reducer<Text, Text, Text, Text> {
    private ArrayList<Text> listA = new ArrayList<Text>();
    private ArrayList<Text> listB = new ArrayList<Text>();
    private String joinType = null;

    public void setup(Context context) {
        joinType = context.getConfiguration().get("join.type");
    }

    public void reduce(Text key, Iterable<Text> values, Context context) throws ...
    {
        listA.clear(); listB.clear();
        // Iterate through all values and separate them into an A-list and B-list
        while (values.hasNext()) {
            tmp = values.next();
            if (tmp.charAt(0) == 'A') {
                listA.add(new Text(tmp.toString().substring(1)));
            } else if (tmp.charAt('0') == 'B') {
                listB.add(new Text(tmp.toString().substring(1)));
            }
        }
        // Execute our join logic now that the lists are filled
        executeJoinLogic(context);
    }

    ...
• **executeJoinLogic** computes the actual join as part of the reducer task

• **Inner join**: if both lists are not empty, simply perform two nested loops and join each of the values.

```java
private void executeJoinLogic(Context context) throws ...
{
...
 if (joinType.equalsIgnoreCase("inner")) {
 // If both lists are not empty, join A with B
 if (!listA.isEmpty() && !listB.isEmpty()) {
 for (Text A : listA) {
 for (Text B : listB) {
 context.write(A, B);
 }
 }
 }
 }
...
Left outer join:
- if the right list is not empty, join \(A \) with \(B \);
- otherwise, output each record of \(A \) with an empty string.

Right outer join is similar.

```java
... else if (joinType.equalsIgnoreCase("leftouter")) {
    // For each entry in A
    for (Text A : listA) {
        if (!listB.isEmpty()) {
            // Join A and B
            for (Text B : listB) {
                context.write(A, B);
            }
        } else {
            // Output A with empty string
            context.write(A, "");
        }
    }
}
...
Reduce Side Join Example/5

- **Full outer join**: all records need to be kept
  - if list A is not empty, for every element in A:
    - join with B if B is not empty;
    - otherwise, output A;
  - if A is empty, just output B.

```java
else if (joinType.equalsIgnoreCase("fullouter")) {
 if (!listA.isEmpty()) {
 for (Text A : listA) {
 if (!listB.isEmpty()) {
 // Join A with B
 for (Text B : listB) {
 context.write(A, B);
 }
 } else {
 // Output A with empty string
 context.write(A, "");
 }
 }
 } else {
 // list A is empty: just output B
 for (Text B : listB) {
 context.write("", B);
 }
 }
}
```
Join Patterns

Reduce Side Join

Reduce Side Join Example/6

- **Anti join**: if exactly one of the lists is empty, output the records from the non-empty list with an empty text.
  - Recall that the anti-join contains only those tuples from both relations that do not have a match in the other relation.

```java
... else if (joinType.equalsIgnoreCase("anti")) {
 // If list A is empty and B is not empty or vice versa
 if (listA.isEmpty() XOR listB.isEmpty()) {
 // Iterate over both A and B
 // The previous XOR check will make sure exactly one of
 // these lists is empty and therefore the list will be skipped
 for (Text A : listA) {
 context.write(A, EMPTY_TEXT);
 }
 for (Text B : listB) {
 context.write(EMPTY_TEXT, B);
 }
 }
}
...```

ADMT 2018/19 — Unit 18 J. Gamper
Replicated Join

- **Replicated Join**: Mapper implements the actual join, no reducer is used.
- All data sets, except a large one, are read into memory during the setup phase of each map task.
- The large data set is the “left” part of the join.
Map-only pattern, i.e., no combiner, partitioner or reducer is used.

Read all files from the distributed cache during the setup of the mapper method and store them into in-memory lookup tables.

Mapper processes each record and joins it with all the data stored in memory.
Composite Join

- **Composite join** is performed on the map-side with many very large inputs.
- Completely eliminates the need to shuffle and sort all the data to the reduce phase.
- Data need to be already organized or prepared in a very specific way:
 - Sorted by foreign key, partitioned by foreign key, and read in a very particular manner.
- Particularly useful if you want to join very large data sets together.
Composite Join Applicability

- All data sets can be read with the foreign key as the input key to the mapper.
- All data sets have the same number of partitions.
- Each partition is sorted by foreign key, and all the foreign keys reside in the associated partition of each data set.
- The data sets do not change often (if they have to be prepared).
Composite Join Structure

- **Map-only**
- **Mapper is very trivial.**
- **Two values are retrieved from the input tuple and output to file system, e.g., (key, value1, value2)**
- **Most of the work is done by the driver code CompositeInputFormat**
 - parses all the input files and outputs records to the mapper.
Cartesian Product

- **Intent**
 - Pair up and compare *every single record with every other record* in one or more data sets
 - A Cartesian product does not fit nicely into the MapReduce paradigm
 - The operation is not intuitively splittable and cannot be parallelized very well
- **Applications**
 - You want to analyze relationships between all pairs of individual records.
- **SQL Resemblance**
 - `SELECT * FROM tableA, tableB;`
Map-only

Essentially a RecordReader job

Cross product of input splits is determined during job setup.

Each record reader is responsible for generating the cross product of records from both input splits.
MapReduce requires a new way of thinking and problem solving.

- **Key decision:** What should be done by `map` and what by `reduce`

Design patterns are helpful for designing MapReduce algorithms.

- Provide templates for solving common data manipulation problems.
- Different categories of patterns.

Filtering patterns are used to extract a small subset of the data.

- Filter analyse each record individually, and data is not modified.
- **Sampling** as a special form of filtering
- Different filtering patterns: Filtering, Bloom filtering, Top Ten, Distinct.

Numerical summarization patterns for calculating aggregate values.

Join patterns combine data from different sources

- Among the most complex patterns in MR
- Combining data does not fit gracefully into the MR paradigm (which considers tuples individually)
- Different join patterns: Reduce Side Join, Replicated Join, Composite Join, Cartesian Product