
Advanced Data Management Technologies
Unit 17 — Executing MapReduce

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

ADMT 2018/19 — Unit 17 J. Gamper 1/25



Outline

1 Task Scheduling in MapReduce

2 Error Handling

ADMT 2018/19 — Unit 17 J. Gamper 2/25



Task Scheduling in MapReduce

Outline

1 Task Scheduling in MapReduce

2 Error Handling

ADMT 2018/19 — Unit 17 J. Gamper 3/25



Task Scheduling in MapReduce

Some Terminology

A Job is a “full programm”, i.e., the execution of a Mapper and Reducer
across a data set.

A task is an exectuation of a Mapper or a Reducer on a slice of data.

A task attempt is a particular instance of an attempt to execute a task on
a machine.

A particular task will be attempted at least once, possibly more times if it
crashes.

Example

Running “word count” across 20 files is one job
20 files to be mapped imply 20 map tasks + some reduce tasks.
At least 20 map task attempts will be performed (more if a machine crashes)

ADMT 2018/19 — Unit 17 J. Gamper 4/25



Task Scheduling in MapReduce

MR Architecture

ADMT 2018/19 — Unit 17 J. Gamper 5/25



Task Scheduling in MapReduce

Program Execution – High Level View

MapReduce adopts a master-slave architecture.

The master node in MapReduce is referred to as Job Tracker (JT).

Each slave node in MapReduce is referred to as Task Tracker (TT).

MapReduce adopts a pull scheduling strategy rather than a push one,
i.e., JT does not push map and reduce tasks to TTs, but TTs pull them by
making pertaining requests.

JobTraker (JT)

Master node

T1 . . . Tn

Task queue

MapReduce job
submitted by
client computer

TaskTraker (TT)

Slave node

. . .
Task slots

TaskTraker (TT)

Slave node

. . .
Task slots

request reply request reply

ADMT 2018/19 — Unit 17 J. Gamper 6/25



Task Scheduling in MapReduce

Programm Execution – Details

ADMT 2018/19 — Unit 17 J. Gamper 7/25



Task Scheduling in MapReduce

Task Execution/1

Every TT sends a heartbeat message periodically to JT

tells that TT is alive,
but contains also requests for a map or a reduce task to run,
or simply the return of a task.

When a new task is requested, the JT chooses a job and selects a task
from that job.

Map Task Scheduling

JT satisfies requests for map tasks via attempting to schedule mappers in
the vicinity of their input splits, i.e., locality is considered.

Reduce Task Scheduling

However, JT simply assigns the next yet-to-run reduce task to a requesting
TT regardless of TTs network location and its implied effect on the reducers
shuffle time, i.e., locality is not considered.

ADMT 2018/19 — Unit 17 J. Gamper 8/25



Task Scheduling in MapReduce

Task Execution/2

MapReduce programs are contained in a Java “jar” file + an XML file
containing serialized program configuration options.

Running a MapReduce job places these files into the HDFS and notifies
TaskTrackers where to retrieve the relevant program code.

Task execution consists of the following steps for a TT:

Copy the JAR-file from the HDFS to the local file system.
Similar, configuration data are copied from the distributed cache.
The actual task is run in a new JVM to avoid that bugs in user-defined map
and reduce functions affect the tasktracker.

ADMT 2018/19 — Unit 17 J. Gamper 9/25



Task Scheduling in MapReduce

Data Distribution

All data is accessible via a distributed filesystem with replication, such as
HDFS or GFS

Files in GFS (and similar in HDFS) are

divided into chunks (default 64MB) and
stored with replications (typically 3 replicas on different nodes)

Data transfer is handled by the distributed file system

ADMT 2018/19 — Unit 17 J. Gamper 10/25



Task Scheduling in MapReduce

Locality

Since all mappers are equivalent, the master tries to do the work on nodes
that store a replica of the data

Reading from local disk is much faster than reading from a remote server

MR uses locality hints from GFS/HDFS and assigns map tasks as follows:

Try to assign a task to a machine with a local copy of the input data;
or, less preferable, to a machine for which a copy of the data is stored on a
server on the same network switch;
or, assign to any available worker.

ADMT 2018/19 — Unit 17 J. Gamper 11/25



Task Scheduling in MapReduce

Job Scheduling

MapReduce in Hadoop comes with a choice of schedulers

The default is the FIFO scheduler which schedules jobs in order of
submission.

There is also a multi-user scheduler, called the fair scheduler, which aims to
give every user a fair share of the cluster capacity over time.

ADMT 2018/19 — Unit 17 J. Gamper 12/25



Error Handling

Outline

1 Task Scheduling in MapReduce

2 Error Handling

ADMT 2018/19 — Unit 17 J. Gamper 13/25



Error Handling

Fault Tolerance in Hadoop

MR can successfully complete jobs, even when
they are executed on large clusters, where the
probability of failures increases.

The primary way for MR to achieve fault
tolerance is through restarting tasks.

If a TT fails to communicate with the JT for a period of time (by default,
1 minute in Hadoop), the JT assumes that the TT has crashed:

Job is still in the map phase: JT asks another TT to re-execute all mappers
that previously ran at the failed TT.
Job is in the reduce phase: JT asks another TT to re-execute all reducers
that were in progress on the failed TT.

ADMT 2018/19 — Unit 17 J. Gamper 14/25



Error Handling

Task Failure

Task in a local node fails

The TT marks the task attempt as failed and notifies the JT.
The JT re-schedules the task if possible on another node.
The slot in the local node is freed up for another task.

Hanging tasks in a local node

If the TT gets no progress update for a while, the task is marked as failed.
The JVM will be killed after a timeout (normally 10 minutes).
The JT is notified about the failed task.

Setting the timeout to zero

Disables the timeout
Long-running tasks are never marked as failed.
A hanging task will never free up its slot → cluster slowdown over time
Not recommended!

ADMT 2018/19 — Unit 17 J. Gamper 15/25



Error Handling

Recover from Task Failure by Re-execution/1

ADMT 2018/19 — Unit 17 J. Gamper 16/25



Error Handling

Recover from Task Failure by Re-execution/2

ADMT 2018/19 — Unit 17 J. Gamper 17/25



Error Handling

Speculative Execution

A MR job is dominated by the slowest task.

MR attempts to locate slow tasks, called stragglers.

If a straggler is discovered, a redundant (speculative) task is run that will
optimistically commit before the corresponding straggler.

Whichever copy (among the two copies) of a task commits first, it becomes
the definitive copy, and the other copy is killed by the JT.

This process is known as speculative execution.

Only one copy of a straggler is allowed to be speculated.

ADMT 2018/19 — Unit 17 J. Gamper 18/25



Error Handling

How does Hadoop Locate Stragglers?

Hadoop monitors each task progress using a progress score between 0 and 1

If a task’s progress score is less than (average − 0.2), and the task has run
for at least 1 minute, it is marked as a straggler

ADMT 2018/19 — Unit 17 J. Gamper 19/25



Error Handling

Dealing with Reduce Stragglers/1

Stragglers in the reduce phase are particularly expensive:

Reducer retrieves data remotely from many servers
Sorting is expensive on local resources
Reducing usually can not start until Mapping is done

Re-execution due to machine failures could double the runtime.

ADMT 2018/19 — Unit 17 J. Gamper 20/25



Error Handling

Dealing with Reduce Stragglers/2

Technique 1: Create a backup instance as early and as necessary as
possible.

ADMT 2018/19 — Unit 17 J. Gamper 21/25



Error Handling

Dealing with Reduce Stragglers/3

Technique 2: Retrieving map output and sorting are expensive, but we can
transport the sorted input to the backup reducer.

ADMT 2018/19 — Unit 17 J. Gamper 22/25



Error Handling

Dealing with Reduce Stragglers/4

Technique 3: Divide a reduce task into smaller ones to take advantage of
more parallelism.

ADMT 2018/19 — Unit 17 J. Gamper 23/25



Error Handling

Master as Single Point of Failure

Most serious failure mode: the JT fails, and hence all running jobs fail.

Hadoop has no mechanism for dealing with JT failure.

After restart, all jobs that were running at the time of failure need to be
resubmitted.

ADMT 2018/19 — Unit 17 J. Gamper 24/25



Summary

MR programm execution is based on a master-slave architecture

The master node runs the JobTracker (JT), the slave nodes run
TaskTracker (TT)

Pull scheduling strategy, i.e., TTs pull tasks from JT.

TT send heartbeat message to JT

Locality principle in assigning map tasks is applied.

FIFO and Fair scheduler are available.

Error handling mainly through restarting tasks

Start speculative tasks to deal with stragglers

Reduce stragglers are more expensive.

Master failure is most serious failure – single point of failure. Restart!

ADMT 2018/19 — Unit 17 J. Gamper 25/25


	Task Scheduling in MapReduce
	Error Handling

